Functional organization of vestibulospinal inputs on thoracic motoneurons responsible for trunk postural control in Xenopus.


Journal

The Journal of physiology
ISSN: 1469-7793
Titre abrégé: J Physiol
Pays: England
ID NLM: 0266262

Informations de publication

Date de publication:
02 2020
Historique:
received: 10 07 2019
accepted: 08 11 2019
pubmed: 14 12 2019
medline: 12 2 2021
entrez: 14 12 2019
Statut: ppublish

Résumé

Vestibulospinal reflexes participate in postural control. How this is achieved has not been investigated fully. We combined electrophysiological, neuroanatomical and imaging techniques to decipher the vestibulospinal network controlling the activation of back and limb muscles responsible for postural adjustments. We describe two distinct pathways activating either thoracic postural motoneurons alone or thoracic and lumbar motoneurons together, with the latter co-ordinating specifically hindlimb extensors and postural back muscles. In vertebrates, trunk postural stabilization is known to rely mainly on direct vestibulospinal inputs on spinal axial motoneurons. However, a substantial role of central spinal commands ascending from lumbar segments is not excluded during active locomotion. In the adult Xenopus, a lumbar drive dramatically overwhelms the descending inputs onto thoracic postural motoneurons during swimming. Given that vestibulospinal fibres also project onto the lumbar segments that shelter the locomotor generators, we investigated whether such a lumbo-thoracic pathway may relay vestibular information and consequently, also be involved in the control of posture at rest. We show that thoracic postural motoneurons exhibit particular dendritic spatial organization allowing them to gather information from both sides of the cord. In response to passive head motion, these motoneurons display both early and delayed discharges, with the latter occurring in phase with ipsilateral hindlimb extensor bursts. We demonstrate that both vestibulospinal and lumbar ascending fibres converge onto postural motoneurons, and that thoracic motoneurons monosynaptically respond to the electrical stimulation of either pathway. Finally, we show that vestibulospinal fibres project to and activate lumbar interneurons with thoracic projections. Taken together, our results complete the scheme of the vestibulospinal control of posture by illustrating the existence of a novel, indirect pathway, which implicates lumbar interneurons relaying vestibular inputs to thoracic motoneurons, and participating in global body postural stabilization in the absence of active locomotion.

Identifiants

pubmed: 31834949
doi: 10.1113/JP278599
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

817-838

Informations de copyright

© 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.

Références

Alexander RMcN, Dimery NJ & Ker RF (1985). Elastic structures in the back and their role in galloping in some mammals. J Zool Lond 207, 467-482.
Ali AS, Rowen KA & Iles JF (2003). Vestibular actions on back and lower muscles during postural tasks in man. J Physiol (Lond) 546, 615-624.
Allan DW & Greer JJ (1997). Development of phrenix motoneuron morphology in the fetal rat. J Comp Neurol 382, 469-479.
Amblard B, Assaiante C, Cremieux J & Marchand A (1990). From posture to gait: which sensory input for which function? In Disorders of Posture and Gait. ed. Brandt T, Paulus W, Bles W, Dietrich M, Krafczyk S, Straube A, pp. 168-176. Georg Thieme, Stuttgart.
Bacskai T, Veress G, Halasi G & Matesz C (2010). Crossing dendrites of hypoglossal motoneurons: possible morphological substrate of coordinated and synchronized tongue movements of the frog, Rana esculenta. Brain Res 1313, 89-96.
Bagnall MW & Schoppik D (2018). Development of vestibular behaviors in zebrafish. Curr Opin Neurobiol 53, 83-89.
Beliez L, Barrière G, Bertrand SS & Cazalets JR (2015). Origin of thoracic spinal network activity during locomotor-like activity in the neonatal rat. J Neurosci 35, 6117-6130.
Bello-Rojas S, Istrate AE, Kishore S & McLean DL (2019). Central and peripheral innervation patterns of defined axial motor units in larval zebrafish. J Comp Neurol 527, 2557-2572.
Beraneck M & Straka H (2011). Vestibular signal processing by separate sets of neuronal filters. J Vestib Res 21, 5-19.
Berry MS & Pentreath VW (1976). Criteria for distinguishing between monosynaptic and polysynaptic transmission. Brain Res 105, 1-20.
Beyeler A, Métais C, Combes D, Simmers J & Le Ray D (2008). Metamorphosis-induced changes in the coupling of thoraco-lumbar motor outputs during swimming in Xenopus laevis. J Neurophysiol 100, 1372-1383.
Beyeler A, Rao G, Ladepeche L, Jacques A, Simmers J & Le Ray D (2013). Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis. PLoS ONE 8, e71013.
Bougerol M, Auradé F, Lambert FM, Le Ray D, Combes D, Thoby-Brisson M, Relaix F, Pollet N & Tostivint H (2015). Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver. PLoS ONE 10, e0117370.
Boyle R (1993). Activity of medial vestibulospianl tract cells during rotation and ocular movement in the alert squirrel monkey. J Neurophysiol 70, 2176-2180.
Boyle R & Johanson C (2003). Morphological properties of vestibulospinal neurons in primates. Ann NY Acad Sci 1004, 183-195.
Cameron WE, Averill DB & Berger AJ (1983). Morphology of cat phrenic motoneurons as revealed by intracellular injection of horseradish peroxidase. J Comp Neurol 219, 70-80.
Cottingham SL & Pfaff DW (1987). Electrical stimulation of the midbrain gray facilitates lateral vestibulospinal activation of back muscle EMG in the rat. Brain Res 421, 397-400.
Cullen KE (2012). The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci 35, 185-196.
Deliagina TG, Bellozerova IN, Zelenin PV & Orlovsky GN (2008). Spinal and supraspinal postural networks. Brain Res Rev 57, 212-221.
Erulkar SD & Soller RW (1980). Interactions among lumbar motoneurons on opposite sides of the frog spinal cord: morphological and electrophysiological studies. J Comp Neurol 192, 473-488.
Fanardjian VV, Manvelyan LR, Zakarian VL, Pogossian VI & Nasoyan AM (1999). Electrophysiological properties of the somatotopic organization of the vestibulospinal system in the frog. Neuroscience 94, 845-857.
Grillner S, Hongo T & Lund S (1970). The vestibulospinal tract. Effects on alpha-motoneurones in the lumbosacral spinal cord in the cat. Exp Brain Res 10, 94-120.
Grundy D (2015). Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. J Physiol 593, 2547-2549.
Jovanovic K & Burke RE (2004). Morphology of brachial segments in mudpuppy (Necturus maculosus) spinal cord studied with confocal and electron microscopy. J Comp Neurol 471, 361-385.
Kasumacic N, Glover JC & Perreault MC (2010). Segmental patterns of vestibular-mediated synaptic inputs to axial and limb motoneurons in the neonatal mouse assessed by optical recording. J Physiol (Lond) 588, 4905-4925.
Kasumacic N, Lambert FM, Coulon P, Bras H, Vinay L, Perreault MC & Glover JC (2015). Segmental organization of vestibulospinal inputs to segmental interneurons mediating crossed activation of thoracolumbar motoneurons in the neonatal mouse. J Neurosci 35, 8158-8169.
Keshner EA & Cohen H (1989). Current concepts of the vestibular system reviewed: 1. The role of the vestibulospinal system in postural control. Am J Occup Ther 43, 320-330.
Krutki P, Jankowska E & Edgley SA (2003). Are crossed actions of reticulospinal and vestibulospinal neurons on feline motoneurons mediated by the same or separate commissural neurons? J Neurosci 23, 8041-8050.
Kuse B, Matsuyama K, Matsui T, Miyata H & Mori S (1999). Segment-specific branching of single vestibulospinal tract axons arising from the lateral vestibular nucleus in the cat: a PHA-L tracing study. J Comp Neurol 414, 80-96.
Kushiro K, Bai R, Kitajima N, Sugita-Kitajima A & Uchino Y (2008). Properties and axonal trajectories of posterior semicircular canal nerve-activated vestibulospinal neurons. Exp Brain Res 191, 257-264.
Lambert FM, Beck JC, Baker R & Straka H (2008). Semicircular canal size determines the developmental onset of angular vestibuloocular reflexes in larval Xenopus. J Neurosci 28, 8086-8095.
Lambert FM, Cardoit L, Courty E, Bougerol M, Thoby-Brisson M, Simmer J, Tostivint H & Le Ray D (2018). Functional limb muscle innervation prior to cholinergic transmitter specification during early metamorphosis in Xenopus. eLife 7, e30693.
Lambert FM, Malinvaud D, Gratacap M, Straka H & Vidal P-P (2013). Restricted neural plasticity in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic deformations. J Neurosci 33, 6845-6856.
Light AR & Metz CB (1978). The morphology of the spinal efferent and afferent neurons contributing to the ventral roots of the cat. J Comp Neurol 179, 501-516.
Lu DC, Niu T & Alaynick WA (2015). Molecular and cellular development of spinal cord locomotor circuitry. Front Mol Neurosci 8, 25.
Magherini PC, Precht W & Richter A (1974). Vestibulospinal effects on hindlimb motoneurons of the frog. Pflügers Arch 348, 221-223.
Massion J, Alexandrov A & Frolov A (2004). Why and how are posture and movement coordinated. Prog Brain Res 143, 13-27.
McCall AA, Miller DM & Yates BJ (2017). Descending influences on vestibulospinal and vestibulosympathetic reflexes. Front Neurol 8, 112.
McDonagh JC, Hornby TG, Reinking RM & Stuart DG (2002). Associations between the morphology and physiology of ventral horn neurons in the adult turtle. J Comp Neurol 454, 177-191.
Medrea I & Cullen KE (2013). Multisensory integration in early processing in mice: the encoding of passive vs. active motion. J Neurophysiol 110, 2704-2717.
Menelaou E & McLean DL (2012). A gradient in endogenous rhythmicity and oscillatory drive matches recruitment order in axial motor pool. J Neurosci 32, 10925-10939.
Miller DM, Reighard DA, Mehta AS, Mehta AS, Kalash R & Yates BJ (2009). Responses of thoracic spinal interneurons to vestibular stimulation. Exp Brain Res 195, 89-100.
Muybridge E (1957). Animals in Motion. Dover, Mineola, NY.
Nieuwkoop PD & Faber J (1956). Normal Table of Xenopus Laevis (DAUDIN). A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End. p. 260. North Holland Publishing Co., Amsterdam.
Roberts BL & Meredith GE (1989). The efferent system. In Mechanosensory Lateral Line: Neurobiology and Evolution, ed. Commbs S, Gorner P, Munz H, pp. 445-459. Springer, New York, NY.
Rose RD & Collins WF (1985). Crossing dendrites may be the substrate for synchronized activation of penile motoneurons. Brain Res 337, 373-377.
Rosenthal BM & Cruce WL (1985). The dendritic extent of motoneurons in frog brachial spinal cord: a computer reconstruction of HRP-filled cells. With comments on dendritic reconstruction methodologies. Brain Behav Evol 27, 106-114.
Shinoda Y, Sugiuchi Y, Izawa Y & Hata Y (2006). Long descending motor tract axons and their control of neck and axial muscles. Prog Brain Res 151, 527-563.
Straka H & Baker R (2003). Vestibular blueprint in early vertebrates. Front Neur Circ 7, 182.
Straka H, Baker R & Gilland E (2001). Rhombomeric organization of vestibular pathways in larval frogs. J Comp Neurol 437, 42-55.
Straka H & Dieringer N (2004). Basic organization principles of the VOR: lessons from frogs. Prog Neurobiol 73, 259-309.
Straka H, Fritzsch B & Glover JC (2014). Connecting ears to eye muscles: evolution of a ‘simple’ reflex arc. Brain Behav Evol 83, 162-75.
Straka H, Lambert FM, Pfanzelt S & Beraneck M (2009). Vestibulo-ocular signal transformation in frequency-tuned channels. Ann N Y Acad Sci 1164, 37-44.
Szekely G (1976). The morphology of motoneurons and dorsal root fibers in the frog's spinal cord. Brain Res 103, 275-290.
Tarras-Wahlberg S & Rekling JC (2009). Hypoglossal motoneurons in newborn mice receive respiratory drive from both sides of the medulla. Neuroscience 161, 259-268.
Ulfhake B & Cullheim S (1981). A quantitative light microscopic study of the dendrites of cat spinal γ-motoneurons after intracellular staining with horseradish peroxidase. J Comp Neurol 202, 585-596.
Ulfhake B & Kellerth JO (1981). A quantitative light microscopic study of the dendrites of cat spinal α-motoneurons after intracellular staining with horseradish peroxidase. J Comp Neurol 202, 571-583.
Vallois HV (1922). Les Transformations De La Musculature De L’Épisome Chez Les Vertébrés. Doin, Paris.
Wallen P, Grillner S, Feldman JL & Bergelt S (1985). Dorsal and ventral myotome motoneurons and their input during fictive locomotion in lamprey. J Neurosci 5, 654-661.
Wilson VJ, Yoshida M & Schor RH (1970). Supraspinal monosynaptic excitation and inhibition of thoracic back motoneurons. Exp Brain Res 11, 282-295.

Auteurs

Anne Olechowski-Bessaguet (A)

Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France.

Raphaël Grandemange (R)

Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France.

Laura Cardoit (L)

Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France.

Elric Courty (E)

Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France.

François M Lambert (FM)

Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France.

Didier Le Ray (D)

Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH