Herpesviruses induce aggregation and selective autophagy of host signalling proteins NEMO and RIPK1 as an immune-evasion mechanism.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
02 2020
Historique:
received: 16 01 2019
accepted: 30 10 2019
pubmed: 18 12 2019
medline: 17 7 2020
entrez: 18 12 2019
Statut: ppublish

Résumé

Viruses manipulate cellular signalling by inducing the degradation of crucial signal transducers, usually via the ubiquitin-proteasome pathway. Here, we show that the murine cytomegalovirus (Murid herpesvirus 1) M45 protein induces the degradation of two cellular signalling proteins, the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) essential modulator (NEMO) and the receptor-interacting protein kinase 1 (RIPK1), via a different mechanism: it induces their sequestration as insoluble protein aggregates and subsequently facilitates their degradation by autophagy. Aggregation of target proteins requires a distinct sequence motif in M45, which we termed 'induced protein aggregation motif'. In a second step, M45 recruits the retromer component vacuolar protein sorting 26B (VPS26B) and the microtubule-associated protein light chain 3 (LC3)-interacting adaptor protein TBC1D5 to facilitate degradation of aggregates by selective autophagy. The induced protein aggregation motif is conserved in M45-homologous proteins of several human herpesviruses, including herpes simplex virus, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, but is only partially conserved in the human cytomegalovirus UL45 protein. We further show that the HSV-1 ICP6 protein induces RIPK1 aggregation and degradation in a similar fashion to M45. These data suggest that induced protein aggregation combined with selective autophagy of aggregates (aggrephagy) represents a conserved viral immune-evasion mechanism.

Identifiants

pubmed: 31844296
doi: 10.1038/s41564-019-0624-1
pii: 10.1038/s41564-019-0624-1
doi:

Substances chimiques

Atg5 protein, mouse 0
Autophagy-Related Protein 5 0
Intracellular Signaling Peptides and Proteins 0
NEMO protein, mouse 0
Protein Aggregates 0
Viral Proteins 0
herpes simplex virus type 1-protein ICP6 0
Ribonucleotide Reductases EC 1.17.4.-
m45 protein, Mouse cytomegalovirus 1 EC 1.17.4.-
Receptor-Interacting Protein Serine-Threonine Kinases EC 2.7.11.1
Ripk1 protein, mouse EC 2.7.11.1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

331-342

Références

Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).
pubmed: 20303872
Orzalli, M. H. & Kagan, J. C. Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol. 27, 800–809 (2017).
pubmed: 28642032 pmcid: 5653411
Boutell, C. & Everett, R. D. Regulation of alphaherpesvirus infections by the ICP0 family of proteins. J. Gen. Virol. 94, 465–481 (2013).
pubmed: 23239572
Lanfranca, M. P., Mostafa, H. H. & Davido, D. J. HSV-1 ICP0: an E3 ubiquitin ligase that counteracts host intrinsic and innate immunity. Cells 3, 438–454 (2014).
pubmed: 24852129 pmcid: 4092860
Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell. Dev. Biol. 27, 107–132 (2011).
pubmed: 21801009
Birgisdottir, A. B., Lamark, T. & Johansen, T. The LIR motif—crucial for selective autophagy. J. Cell Sci. 126, 3237–3247 (2013).
pubmed: 23908376
Zaffagnini, G. & Martens, S. Mechanisms of selective autophagy. J. Mol. Biol. 428, 1714–1724 (2016).
pubmed: 26876603 pmcid: 4871809
Choi, Y., Bowman, J. W. & Jung, J. U. Autophagy during viral infection—a double-edged sword. Nat. Rev. Microbiol. 16, 341–354 (2018).
pubmed: 29556036 pmcid: 6907743
Kudchodkar, S. B. & Levine, B. Viruses and autophagy. Rev. Med. Virol. 19, 359–378 (2009).
pubmed: 19750559 pmcid: 2852112
Dong, X. & Levine, B. Autophagy and viruses: adversaries or allies? J. Innate Immun. 5, 480–493 (2013).
pubmed: 23391695 pmcid: 3790331
Pellet, P. E. & Roizman, B. in Fields Virology 6th edn (eds Knipe, D., M. & Howley, P. M.) 1802–1822 (Lippincott Williams & Wilkins, 2013).
Brune, W., Ménard, C., Heesemann, J. & Koszinowski, U. H. A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science 291, 303–305 (2001).
pubmed: 11209080
Mack, C., Sickmann, A., Lembo, D. & Brune, W. Inhibition of proinflammatory and innate immune signaling pathways by a cytomegalovirus RIP1-interacting protein. Proc. Natl Acad. Sci. USA 105, 3094–3099 (2008).
pubmed: 18287053
Upton, J. W., Kaiser, W. J. & Mocarski, E. S. Cytomegalovirus M45 cell death suppression requires receptor-interacting protein (RIP) homotypic interaction motif (RHIM)-dependent interaction with RIP1. J. Biol. Chem. 283, 16966–16970 (2008).
pubmed: 18442983 pmcid: 2427362
Upton, J. W., Kaiser, W. J. & Mocarski, E. S. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7, 302–313 (2010).
pubmed: 20413098 pmcid: 4279434
Rebsamen, M. et al. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-κB. EMBO Rep. 10, 916–922 (2009).
pubmed: 19590578 pmcid: 2726668
Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11, 290–297 (2012).
pubmed: 22423968 pmcid: 3531981
Maelfait, J. et al. Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis. EMBO J. 36, 2529–2543 (2017).
pubmed: 28716805 pmcid: 5579359
Fliss, P. M. et al. Viral mediated redirection of NEMO/IKKγ to autophagosomes curtails the inflammatory cascade. PLoS Pathog. 8, e1002517 (2012).
pubmed: 22319449 pmcid: 3271075
Krause, E., de Graaf, M., Fliss, P. M., Dölken, L. & Brune, W. Murine cytomegalovirus virion-associated protein M45 mediates rapid NF-κB activation after infection. J. Virol. 88, 9963–9975 (2014).
pubmed: 24942588 pmcid: 4136316
Hüttmann, J., Krause, E., Schommartz, T. & Brune, W. Functional comparison of molluscum contagiosum virus vFLIP MC159 with murine cytomegalovirus M36/vICA and M45/vIRA proteins. J. Virol. 90, 2895–2905 (2015).
pubmed: 26719271
Carisey, A., Stroud, M., Tsang, R. & Ballestrem, C. Fluorescence recovery after photobleaching. Methods Mol. Biol. 769, 387–402 (2011).
pubmed: 21748690
Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).
pubmed: 21368180
Link, C. D. et al. Conversion of green fluorescent protein into a toxic, aggregation-prone protein by C-terminal addition of a short peptide. J. Biol. Chem. 281, 1808–1816 (2006).
pubmed: 16239215
Huang, Z. et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe 17, 229–242 (2015).
pubmed: 25674982
Lembo, D. et al. The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis. J. Virol. 78, 4278–4288 (2004).
pubmed: 15047841 pmcid: 374293
Mandal, P. et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell 56, 481–495 (2014).
pubmed: 25459880 pmcid: 4512186
Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell. Biol. 142, 665–681 (1998).
pubmed: 9700157 pmcid: 2148169
Swarbrick, J. D. et al. VPS29 is not an active metallo-phosphatase but is a rigid scaffold required for retromer interaction with accessory proteins. PLoS ONE 6, e20420 (2011).
pubmed: 21629666 pmcid: 3101248
Seaman, M. N. The retromer complex—endosomal protein recycling and beyond. J. Cell Sci. 125, 4693–470 (2012).
pubmed: 23148298 pmcid: 3517092
Collins, B. M. et al. Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9, 366–379 (2008).
pubmed: 18088321
Bugarcic, A. et al. Vps26A and Vps26B subunits define distinct retromer complexes. Traffic 12, 1759–1773 (2011).
pubmed: 21920005
Popovic, D. et al. Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol. Cell Biol. 32, 1733–1744 (2012).
pubmed: 22354992 pmcid: 3347240
Johansen, T. & Lamark, T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279–296 (2011).
pubmed: 21189453 pmcid: 3060413
Popovic, D. & Dikic, I. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep. 15, 392–401 (2014).
pubmed: 24603492 pmcid: 3989670
Lembo, D. & Brune, W. Tinkering with a viral ribonucleotide reductase. Trends Biochem. Sci. 34, 25–32 (2009).
pubmed: 18990579
Guo, H. et al. Herpes simplex virus suppresses necroptosis in human cells. Cell Host Microbe 17, 243–251 (2015).
pubmed: 25674983 pmcid: 4382104
Yu, X. et al. Herpes simplex virus 1 (HSV-1) and HSV-2 mediate species-specific modulations of programmed necrosis through the viral ribonucleotide reductase large subunit R1. J. Virol. 90, 1088–1095 (2016).
pubmed: 26559832
Alexander, D. E., Ward, S. L., Mizushima, N., Levine, B. & Leib, D. A. Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J. Virol. 81, 12128–12134 (2007).
pubmed: 17855538 pmcid: 2169004
Lussignol, M. et al. The herpes simplex virus 1 Us11 protein inhibits autophagy through its interaction with the protein kinase PKR. J. Virol. 87, 859–871 (2013).
pubmed: 23115300 pmcid: 3554085
Lamark, T. & Johansen, T. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int. J. Cell Biol. 2012, 736905 (2012).
pubmed: 22518139 pmcid: 3320095
Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339–350 (2012).
pubmed: 22817896 pmcid: 3664196
Ali, M., Roback, L. & Mocarski, E. S. Herpes simplex virus 1 ICP6 impedes TNF receptor 1-induced necrosome assembly during compartmentalization to detergent-resistant membrane vesicles. J. Biol. Chem. 294, 991–1004 (2019).
pubmed: 30504227
Cheng, A. Z. et al. Epstein–Barr virus BORF2 inhibits cellular APOBEC3B to preserve viral genome integrity. Nat. Microbiol. 4, 78–88 (2019).
pubmed: 30420783
Dufour, F. et al. The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNF-α and FasL-induced apoptosis by interacting with caspase-8. Apoptosis 16, 256–271 (2011).
pubmed: 21107701
Kwon, K. M., Oh, S. E., Kim, Y. E., Han, T. H. & Ahn, J. H. Cooperative inhibition of RIP1-mediated NF-κB signaling by cytomegalovirus-encoded deubiquitinase and inactive homolog of cellular ribonucleotide reductase large subunit. PLoS Pathog. 13, e1006423 (2017).
pubmed: 28570668 pmcid: 5469499
Carra, S., Seguin, S. J. & Landry, J. HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 4, 237–239 (2008).
pubmed: 18094623
Meriin, A. B. et al. Hsp70–Bag3 complex is a hub for proteotoxicity-induced signaling that controls protein aggregation. Proc. Natl Acad. Sci. USA 115, E7043–E7052 (2018).
pubmed: 29987014
Paul, P. & Münz, C. Autophagy and mammalian viruses: roles in immune response, viral replication, and beyond. Adv. Virus Res. 95, 149–195 (2016).
pubmed: 27112282
Kim, E. et al. Implication of mouse Vps26b–Vps29–Vps35 retromer complex in sortilin trafficking. Biochem. Biophys. Res. Commun. 403, 167–171 (2010).
pubmed: 21040701
Bresnahan, W. A., Hultman, G. E. & Shenk, T. Replication of wild-type and mutant human cytomegalovirus in life-extended human diploid fibroblasts. J. Virol. 74, 10816–10818 (2000).
pubmed: 11044129 pmcid: 110959
Jordan, S. et al. Virus progeny of murine cytomegalovirus bacterial artificial chromosome pSM3fr show reduced growth in salivary glands due to a fixed mutation of MCK-2. J. Virol. 85, 10346–10353 (2011).
pubmed: 21813614 pmcid: 3196435
Tischer, B. K., Smith, G. A. & Osterrieder, N. En passant mutagenesis: a two step markerless red recombination system. Methods Mol. Biol. 634, 421–430 (2010).
pubmed: 20677001
Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002).
pubmed: 11950999
Handke, W. et al. Viral inhibition of BAK promotes murine cytomegalovirus dissemination to salivary glands. J. Virol. 87, 3592–3596 (2013).
pubmed: 23302869 pmcid: 3592122
Brune, W., Hengel, H. & Koszinowski, U. H. A mouse model for cytomegalovirus infection. Curr. Protoc. Immunol. 43, 19.7.1–19.7.13 (2001).
Mahy, B. W. J. & Kangro, H. O. Virology Methods Manual (Academic Press, 1996).
Tanaka, M., Kagawa, H., Yamanashi, Y., Sata, T. & Kawaguchi, Y. Construction of an excisable bacterial artificial chromosome containing a full-length infectious clone of herpes simplex virus type 1: viruses reconstituted from the clone exhibit wild-type properties in vitro and in vivo. J. Virol. 77, 1382–1391 (2003).
pubmed: 12502854 pmcid: 140785
Ashida, H. et al. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nat. Cell Biol. 12, 66–73 (2010).
pubmed: 20010814
Ostermann, E. et al. Activation of E2F-dependent transcription by the mouse cytomegalovirus M117 protein affects the viral host range. PLoS Pathog. 14, e1007481 (2018).
pubmed: 30532172 pmcid: 6301716
van de Weijer, M. L. et al. A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation. Nat. Commun. 5, 3832 (2014).
pubmed: 24807418 pmcid: 4024746
Chen, D. & Huang, S. Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J. Cell Biol. 153, 169–176 (2001).
pubmed: 11285283 pmcid: 2185520
Montespan, C. et al. Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid. PLoS Pathog. 13, e1006217 (2017).
pubmed: 28192531 pmcid: 5325606
Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).
pubmed: 2849754 pmcid: 338945
Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).
pubmed: 24753421 pmcid: 4086106

Auteurs

Elena Muscolino (E)

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.

Rebekka Schmitz (R)

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.

Stefan Loroch (S)

Leibniz-Institut für Analytische Wissenschaften - ISAS, Dortmund, Germany.

Enrico Caragliano (E)

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.

Carola Schneider (C)

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.

Matteo Rizzato (M)

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.

Young-Hyun Kim (YH)

National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.
Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.

Eva Krause (E)

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.

Vanda Juranić Lisnić (V)

Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.

Albert Sickmann (A)

Leibniz-Institut für Analytische Wissenschaften - ISAS, Dortmund, Germany.

Rudolph Reimer (R)

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.

Eleonore Ostermann (E)

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.

Wolfram Brune (W)

Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany. wolfram.brune@leibniz-hpi.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH