Cardiac TRPV1 afferent signaling promotes arrhythmogenic ventricular remodeling after myocardial infarction.
Afferent Pathways
/ drug effects
Animals
Disease Models, Animal
Diterpenes
/ administration & dosage
Heart
/ physiopathology
Humans
Myocardial Infarction
/ metabolism
Myocardium
/ metabolism
Neurotoxins
/ administration & dosage
Signal Transduction
Swine
TRPV Cation Channels
/ metabolism
Ventricular Remodeling
Arrhythmias
Cardiology
Cardiovascular disease
Innervation
Neuroscience
Journal
JCI insight
ISSN: 2379-3708
Titre abrégé: JCI Insight
Pays: United States
ID NLM: 101676073
Informations de publication
Date de publication:
13 02 2020
13 02 2020
Historique:
received:
04
09
2018
accepted:
12
12
2019
pubmed:
18
12
2019
medline:
22
6
2021
entrez:
18
12
2019
Statut:
epublish
Résumé
Chronic sympathoexcitation is implicated in ventricular arrhythmogenesis (VAs) following myocardial infarction (MI), but the critical neural pathways involved are not well understood. Cardiac adrenergic function is partly regulated by sympathetic afferent reflexes, transduced by spinal afferent fibers expressing the transient receptor potential cation subfamily V member 1 (TRPV1) channel. The role of chronic TRPV1 afferent signaling in VAs is not known. We hypothesized that persistent TRPV1 afferent neurotransmission promotes VAs after MI. Using epicardial resiniferatoxin (RTX) to deplete cardiac TRPV1-expressing fibers, we dissected the role of this neural circuit in VAs after chronic MI in a porcine model. We examined the underlying mechanisms using molecular approaches, IHC, in vitro and in vivo cardiac electrophysiology, and simultaneous cardioneural mapping. Epicardial RTX depleted cardiac TRPV1 afferent fibers and abolished functional responses to TRPV1 agonists. Ventricular tachycardia/fibrillation (VT/VF) was readily inducible in MI subjects by programmed electrical stimulation or cesium chloride administration; however, TRPV1 afferent depletion prevented VT/VF induced by either method. Mechanistically, TRPV1 afferent depletion did not alter cardiomyocyte action potentials and calcium transients, the expression of ion channels, or calcium handling proteins. However, it attenuated fibrosis and mitigated electrical instability in the scar border zone. In vivo recordings of cardiovascular-related stellate ganglion neurons (SGNs) revealed that MI enhances SGN function and disrupts integrated neural processing. Depleting TRPV1 afferents normalized these processes. Taken together, these data indicate that, after MI, TRPV1 afferent-induced adrenergic dysfunction promotes fibrosis and adverse cardiac remodeling, and it worsens border zone electrical heterogeneity, resulting in electrically unstable ventricular myocardium. We propose targeting TRPV1-expressing afferent to reduce VT/VF following MI.
Identifiants
pubmed: 31846438
pii: 124477
doi: 10.1172/jci.insight.124477
pmc: PMC7098788
doi:
pii:
Substances chimiques
Diterpenes
0
Neurotoxins
0
TRPV Cation Channels
0
TRPV1 protein, human
0
resiniferatoxin
A5O6P1UL4I
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK118086
Pays : United States
Organisme : NIH HHS
ID : OT2 OD023848
Pays : United States
Organisme : NIBIB NIH HHS
ID : U01 EB025138
Pays : United States
Organisme : NHLBI NIH HHS
ID : DP2 HL142045
Pays : United States
Organisme : NHLBI NIH HHS
ID : K08 HL125730
Pays : United States
Références
J Physiol. 1973 Mar;229(2):457-69
pubmed: 4724832
Hypertension. 2005 Nov;46(5):1213-8
pubmed: 16216989
J Physiol. 2013 Sep 15;591(18):4515-33
pubmed: 23818689
Cardiovasc Res. 2001 Nov;52(2):226-35
pubmed: 11684070
Channels (Austin). 2016 Sep 2;10(5):395-409
pubmed: 27144598
J Physiol. 2016 Jan 15;594(2):321-41
pubmed: 26572244
Am J Physiol. 1999 Aug;277(2):H812-7
pubmed: 10444509
Catheter Cardiovasc Interv. 2013 Jul 1;82(1):E1-27
pubmed: 23299937
Biomed Pharmacother. 2018 Mar;99:261-270
pubmed: 29334670
J Physiol. 2016 Jul 15;594(14):3911-54
pubmed: 27114333
Am J Physiol Heart Circ Physiol. 2018 May 1;314(5):H954-H966
pubmed: 29351450
J Physiol. 2016 Jul 15;594(14):3877-909
pubmed: 27098459
Circ Res. 2017 Jun 9;120(12):1969-1993
pubmed: 28596175
J Clin Invest. 1986 Nov;78(5):1185-92
pubmed: 3771791
Cardiovasc Res. 2018 Feb 1;114(2):291-299
pubmed: 29186414
Circulation. 1997 Feb 18;95(4):988-96
pubmed: 9054762
J Clin Invest. 2004 May;113(9):1344-52
pubmed: 15124026
Nature. 1997 Oct 23;389(6653):816-24
pubmed: 9349813
J Am Heart Assoc. 2016 Sep 26;5(9):
pubmed: 27671317
J Physiol. 1967 May;190(1):35-53
pubmed: 6038025
J Physiol. 2003 Sep 1;551(Pt 2):515-23
pubmed: 12829722
Circulation. 1975 Apr;51(4):656-67
pubmed: 1167816
Cardiovasc Res. 1999 May;42(2):284-97
pubmed: 10533567
Hypertension. 2014 Oct;64(4):745-55
pubmed: 24980663
J Pain. 2007 Mar;8(3):263-72
pubmed: 17113352
Hypertension. 2009 Feb;53(2):243-50
pubmed: 19114647
J Physiol. 2004 Feb 1;554(Pt 3):779-89
pubmed: 14645454
Circ Res. 1988 Jul;63(1):182-206
pubmed: 3383375
Brain Res Bull. 1993;30(3-4):239-43
pubmed: 7681350
Am J Physiol Heart Circ Physiol. 2017 Mar 1;312(3):H608-H621
pubmed: 28087519
Am J Physiol. 1969 Sep;217(3):703-9
pubmed: 5807693