When RAD52 Allows Mitosis to Accept Unscheduled DNA Synthesis.
DNA replication
RAD52
chromosome instability
genome instability
mitotic DNA synthesis
replication stress
Journal
Cancers
ISSN: 2072-6694
Titre abrégé: Cancers (Basel)
Pays: Switzerland
ID NLM: 101526829
Informations de publication
Date de publication:
19 Dec 2019
19 Dec 2019
Historique:
received:
26
11
2019
revised:
17
12
2019
accepted:
18
12
2019
entrez:
22
12
2019
pubmed:
22
12
2019
medline:
22
12
2019
Statut:
epublish
Résumé
Faithful duplication of the human genome during the S phase of cell cycle and accurate segregation of sister chromatids in mitosis are essential for the maintenance of chromosome stability from one generation of cells to the next. Cells that are copying their DNA in preparation for division can suffer from 'replication stress' (RS) due to various external or endogenous impediments that slow or stall replication forks. RS is a major cause of pathologies including cancer, premature ageing and other disorders associated with genomic instability. It particularly affects genomic loci where progression of replication forks is intrinsically slow or problematic, such as common fragile site (CFS), telomeres, and repetitive sequences. Although the eukaryotic cell cycle is conventionally thought of as several separate steps, each of which must be completed before the next one is initiated, it is now accepted that incompletely replicated chromosomal domains generated in S phase upon RS at these genomic loci can result in late DNA synthesis in G2/M. In 2013, during investigations into the mechanism by which the specialized DNA polymerase eta (Pol η) contributes to the replication and stability of CFS, we unveiled that indeed some DNA synthesis was still occurring in early mitosis at these loci. This surprising observation of mitotic DNA synthesis that differs fundamentally from canonical semi-conservative DNA replication in S-phase has been then confirmed, called "MiDAS"and believed to counteract potentially lethal chromosome mis-segregation and non-disjunction. While other contributions in this Special Issue of
Identifiants
pubmed: 31861741
pii: cancers12010026
doi: 10.3390/cancers12010026
pmc: PMC7017103
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Subventions
Organisme : Ligue Contre le Cancer
ID : Equipe Labellisée
Déclaration de conflit d'intérêts
The authors have no affiliations or financial involvement with any entity with a financial interest or conflict with the material in this review.
Références
Nat Cell Biol. 2011 Mar;13(3):243-53
pubmed: 21317883
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):686-91
pubmed: 21148102
Elife. 2019 Sep 23;8:
pubmed: 31545170
Int J Mol Sci. 2018 Nov 12;19(11):
pubmed: 30424570
Nature. 2005 Apr 14;434(7035):864-70
pubmed: 15829956
Cell Rep. 2018 Jun 12;23(11):3127-3136
pubmed: 29898385
Nat Struct Mol Biol. 2007 Nov;14(11):1096-104
pubmed: 17934473
Cell Rep. 2013 Oct 17;5(1):207-15
pubmed: 24080495
Mol Cell. 2016 Dec 15;64(6):1117-1126
pubmed: 27984745
Biol Open. 2016 Oct 15;5(10):1485-1492
pubmed: 27612511
Annu Rev Biochem. 2016 Jun 2;85:291-317
pubmed: 27023844
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13390-5
pubmed: 20624954
J Cell Biol. 2011 Apr 4;193(1):97-108
pubmed: 21444690
Clin Cancer Res. 2012 Dec 1;18(23):6400-6
pubmed: 23071261
Nat Rev Genet. 2008 Aug;9(8):594-604
pubmed: 18626473
Mol Cell. 2016 Dec 15;64(6):1127-1134
pubmed: 27984746
PLoS Genet. 2018 Jul 30;14(7):e1007541
pubmed: 30059501
Nat Cell Biol. 2019 Apr;21(4):487-497
pubmed: 30804506
Microbiol Mol Biol Rev. 2002 Dec;66(4):630-70, table of contents
pubmed: 12456786
Trends Cell Biol. 1999 Dec;9(12):M57-60
pubmed: 10611684
Nat Commun. 2017 Jul 17;8:15983
pubmed: 28714477
Oncogenesis. 2012 Oct 22;1:e30
pubmed: 23552402
Mutat Res. 2018 Mar;808:62-73
pubmed: 28843435
Nat Rev Mol Cell Biol. 2017 Oct;18(10):622-636
pubmed: 28811666
Semin Cell Dev Biol. 2011 Oct;22(8):906-12
pubmed: 21782962
Breast Cancer Res. 2017 Nov 16;19(1):122
pubmed: 29145865
Nucleic Acids Res. 2016 May 19;44(9):4189-99
pubmed: 26873923
Nat Rev Mol Cell Biol. 2010 Mar;11(3):208-19
pubmed: 20177396
Oncogene. 2013 Jul 25;32(30):3552-8
pubmed: 22964643
Nat Rev Genet. 2010 May;11(5):319-30
pubmed: 20351727
Nucleic Acids Res. 2010 May;38(9):2917-30
pubmed: 20081207
Nat Rev Cancer. 2011 Feb;11(2):96-110
pubmed: 21258395
Oncogene. 2010 Feb 11;29(6):876-87
pubmed: 19901968
Nat Commun. 2019 Feb 22;10(1):910
pubmed: 30796221
Nature. 2015 Feb 12;518(7538):258-62
pubmed: 25642963
Annu Rev Genet. 2007;41:169-92
pubmed: 17608616
J Cell Biol. 2004 Jun 21;165(6):789-800
pubmed: 15197178
Cell Rep. 2016 Nov 8;17(7):1858-1871
pubmed: 27829156
Oncotarget. 2018 Mar 23;9(22):15836-15846
pubmed: 29662610
PLoS One. 2016 Jan 19;11(1):e0147230
pubmed: 26784987
Sci Signal. 2016 Sep 13;9(445):ra90
pubmed: 27625304
Curr Biol. 2004 Sep 21;14(18):R778-86
pubmed: 15380092
Microbiol Mol Biol Rev. 2007 Mar;71(1):13-35
pubmed: 17347517
Cell. 2011 Apr 29;145(3):435-46
pubmed: 21529715
Mol Cell Biol. 1998 Nov;18(11):6423-9
pubmed: 9774658
Nature. 2011 Feb 3;470(7332):120-3
pubmed: 21258320
Nature. 2015 Feb 12;518(7538):254-7
pubmed: 25642960
Cancers (Basel). 2019 Oct 14;11(10):
pubmed: 31615159
Chem Biol. 2015 Nov 19;22(11):1491-1504
pubmed: 26548611
Nature. 2015 Dec 10;528(7581):286-90
pubmed: 26633632
Haematologica. 2018 Jun;103(6):1038-1046
pubmed: 29567785
Cancer Discov. 2017 Feb;7(2):218-233
pubmed: 28069571
Mol Cell. 2010 Feb 26;37(4):492-502
pubmed: 20188668
Mol Cell. 2013 Oct 24;52(2):221-33
pubmed: 24076219
J Cell Biol. 2013 Apr 29;201(3):395-408
pubmed: 23609533
Nat Commun. 2019 Mar 29;10(1):1412
pubmed: 30926821
Nat Rev Mol Cell Biol. 2010 Oct;11(10):728-38
pubmed: 20861881
Nature. 2012 Jan 18;481(7381):306-13
pubmed: 22258609
Nature. 2005 Apr 14;434(7035):907-13
pubmed: 15829965