Learning a Fixed-Length Fingerprint Representation.


Journal

IEEE transactions on pattern analysis and machine intelligence
ISSN: 1939-3539
Titre abrégé: IEEE Trans Pattern Anal Mach Intell
Pays: United States
ID NLM: 9885960

Informations de publication

Date de publication:
06 2021
Historique:
pubmed: 25 12 2019
medline: 25 12 2019
entrez: 25 12 2019
Statut: ppublish

Résumé

We present DeepPrint, a deep network, which learns to extract fixed-length fingerprint representations of only 200 bytes. DeepPrint incorporates fingerprint domain knowledge, including alignment and minutiae detection, into the deep network architecture to maximize the discriminative power of its representation. The compact, DeepPrint representation has several advantages over the prevailing variable length minutiae representation which (i) requires computationally expensive graph matching techniques, (ii) is difficult to secure using strong encryption schemes (e.g., homomorphic encryption), and (iii) has low discriminative power in poor quality fingerprints where minutiae extraction is unreliable. We benchmark DeepPrint against two top performing COTS SDKs (Verifinger and Innovatrics) from the NIST and FVC evaluations. Coupled with a re-ranking scheme, the DeepPrint rank-1 search accuracy on the NIST SD4 dataset against a gallery of 1.1 million fingerprints is comparable to the top COTS matcher, but it is significantly faster (DeepPrint: 98.80% in 0.3 seconds vs. COTS A: 98.85% in 27 seconds). To the best of our knowledge, the DeepPrint representation is the most compact and discriminative fixed-length fingerprint representation reported in the academic literature.

Identifiants

pubmed: 31870978
doi: 10.1109/TPAMI.2019.2961349
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1981-1997

Auteurs

Classifications MeSH