An experimental system for real-time fluorescence recordings of cell membrane changes induced by electroporation.
3D prototyping
Electric field modeling
Electroporation
Generalized polarization
Real-time fluorescence recording
Journal
European biophysics journal : EBJ
ISSN: 1432-1017
Titre abrégé: Eur Biophys J
Pays: Germany
ID NLM: 8409413
Informations de publication
Date de publication:
Jan 2020
Jan 2020
Historique:
received:
22
07
2019
accepted:
16
12
2019
revised:
28
11
2019
pubmed:
25
12
2019
medline:
30
9
2020
entrez:
25
12
2019
Statut:
ppublish
Résumé
The electroporation of cells is nowadays used for a large variety of purposes, from basic research to cancer therapy and food processing. Understanding molecular mechanisms of the main processes involved in electroporation is thus of significant interest. In the present work, we propose an experimental system to record in real time the evolution of any cell parameter which can be evaluated by fluorescence (before, during and after application of the electroporation pulses to cells in suspension). The system is based on the design of adequate electroporation electrodes, compatible with a standard spectrofluorometer cuvette housing. The electric field intensity generated when pulses are applied was carefully characterized for different geometries of the electrodes, to choose a construction ensuring the greatest homogeneity of the field in combination with the best possible illumination of the sample. As an example of the method's application, we present here generalized polarization kinetics for a varying number of electroporation pulses applied to a cell suspension; the general polarization parameter is strongly correlated to water presence in the hydrophobic membrane core. The system may be used for many other fluorescence measurements useful for the characterization of the electroporation process.
Identifiants
pubmed: 31872286
doi: 10.1007/s00249-019-01417-9
pii: 10.1007/s00249-019-01417-9
doi:
Substances chimiques
Fluorescent Dyes
0
Laurates
0
2-Naphthylamine
CKR7XL41N4
laurdan
Y97FBL93VW
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
105-111Subventions
Organisme : UEFISCDI
ID : PCCDI58/2018
Références
Argus F, Boyd B, Becker SM (2017) Electroporation of tissue and cells: a three-equation model of drug delivery. Comput Biol Med 84:226–234
doi: 10.1016/j.compbiomed.2017.04.001
Bagatolli L (2012) LAURDAN fluorescence properties in membranes: a journey from the fluorometer to the microscope, fluorescent methods to study biological membranes. Springer, Berlin, pp 3–35
Escoffre JM, Bellard E, Faurie C, Sebai SC, Golzio M, Teissie J, Rols MP (1838) Membrane disorder and phospholipid scrambling in electropermeabilized and viable cells. Biochim Et Biophys Acta Biomembr 2014:1701–1709
Franklin S, Ibey BL, Nash K, Beier HT (2013) Measurement of changes in plasma membrane phospholipid polarization following nanosecond pulsed electric field exposure. In: Wilmink GJ, Ibey BL (eds) Proceedings of SPIE. Terahertz and ultrashort electromagnetic pulses for biomedical applications, vol 8585, pp 85850S1–S7. https://doi.org/10.1117/12.2005091
Fritz S, Sommer CM, Vollherbst D, Wachter MF, Longerich T, Sachsenmeier M, Knapp J, Radeleff BA, Werner J (2015) Irreversible electroporation of the pancreas is feasible and safe in a porcine survival model. Pancreas 44:791–798
doi: 10.1097/MPA.0000000000000331
Haberl S, Miklavcic D, Sersa G, Frey W, Rubinsky B (2013) Cell membrane electroporation-part 2: the applications. IEEE Electr Insul Mag 29:29–37
doi: 10.1109/MEI.2013.6410537
Kandušer M, Šentjurc M, Miklavčič D (2006) Cell membrane fluidity related to electroporation and resealing. Eur Biophys J 35:196–204
doi: 10.1007/s00249-005-0021-y
Kotnik T, Kramar P, Pucihar G, Miklavcic D, Tarek M (2012) Cell membrane electroporation-part 1: the phenomenon. IEEE Electr Insul Mag 28:14–23
doi: 10.1109/MEI.2012.6268438
Kotnik T, Rems L, Tarek M, Miklavčič D (2019) Membrane electroporation and electropermeabilization: mechanisms and models. Ann Rev Biophys 48:63–91
doi: 10.1146/annurev-biophys-052118-115451
Marty M, Sersa G, Garbay JR, Gehl J, Collins CG, Snoj M, Billard V, Geertsen PF, Larkin JO, Miklavcic D, Pavlovic I, Paulin-Kosir SM, Cemazar M, Morsli N, Soden DM, Rudolf Z, Robert C, O’Sullivan GC, Mir LM (2006) Electrochemotherapy—an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. Eur J Cancer 4:3–13
doi: 10.1016/j.ejcsup.2006.08.002
Mir LM (2006) Bases and rationale of the electrochemotherapy. Ejc Suppl 4:38–44
doi: 10.1016/j.ejcsup.2006.08.005
Neumann E (1988) The electroporation hysteresis. Ferroelectrics 86:325–333
doi: 10.1080/00150198808227023
Neumann E, Kakorin S, Toensing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48:3–16
doi: 10.1016/S0302-4598(99)00008-2
Orlowski S, Belehradek J, Paoletti C, Mir LM (1988) Transient electropermeabilization of cells in culture—increase of the cyto-toxycity of anticancer drugs. Biochem Pharmacol 37:4727–4733
doi: 10.1016/0006-2952(88)90344-9
Parasassi T, Gratton E (1992) Packing of phospholipid vesicles studied by oxygen quenching of Laurdan fluorescence. J Fluoresc 2:167–174
doi: 10.1007/BF00866931
Parasassi T, De Stasio G, Dubaldo A, Gratton E (1990) Phase fluctuation in phospholipid-membranes revealed by Laurdan fluorescence. Biophys J 57:1179–1186
doi: 10.1016/S0006-3495(90)82637-0
Parasassi T, De Stasio G, Ravagnan G, Rusch RM, Gratton E (1991) Quantitation of lipid phases in phospholipid-vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 60:179–189
doi: 10.1016/S0006-3495(91)82041-0
Parasassi T, Krasnowska E, Iorio E, Gratton E (1996) PRODAN and LAURDAN partition between the lipid phases and water. Biophys J 70:458
doi: 10.1016/S0006-3495(96)79720-5
Parasassi T, Krasnowska EK, Bagatolli L, Gratton E (1998) LAURDAN and PRODAN as polarity-sensitive fluorescent membrane probes. J Fluoresc 8:365–373
doi: 10.1023/A:1020528716621
Pichi B, Pellini R, De Virgilio A, Spriano G (2018) Electrochemotherapy: a well-accepted palliative treatment by patients with head and neck tumours. Acta Otorhinolaryngol Ital 38:181–187
pubmed: 29984793
pmcid: 6036952
Potter H (2003) Transfection by electroporation. Curr Protoc Mol Biol 121:9
Pucihar G, Kotnik T, Kanduser M, Miklavcic D (2001) The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54:107–115
doi: 10.1016/S1567-5394(01)00117-7
Rems L, Viano M, Kasimova MA, Miklavcic D, Tarek M (2019) The contribution of lipid peroxidation to membrane permeability in electropermeabilization: a molecular dynamics study. Bioelectrochemistry 125:46–57
doi: 10.1016/j.bioelechem.2018.07.018
S.J.E. Rombouts, M.W. Nijkamp, W.P.M. van Dijck, L.A.A. Brosens, M. Konings, R. van Hillegersberg, I. Rinkes, J. Hagendoom, F.H. Wittkamp, I.Q. Molenaar, Irreversible Electroporation of the Pancreas Using Parallel Plate Electrodes in a Porcine Model: A Feasibility Study, Plos One, 12 (2017).
S. A. Sanchez, A. Tricerri, G. Gunther, E. Gratton, Laurdan Generalized Polarization: from cuvette to microscope, 2007.
Saulis G (1997) Pore disappearance in a cell after electroporation: theoretical simulation and comparison with experiments. Biophys J 73:1299–1309
doi: 10.1016/S0006-3495(97)78163-3
Saulis G, Venslauskas MS, Naktinis J (1991) Kinetics of pore resealing in cell membranes after electroporation. J Electroanal Chem Interfacial Electrochem 321:1–13
doi: 10.1016/0022-0728(91)85564-6
K. Scheinpflug, O. Krylova, H. Strahl, Measurement of Cell Membrane Fluidity by Laurdan GP: Fluorescence Spectroscopy and Microscopy, Methods in molecular biology (Clifton, N.J.), 1520 (2017) 159–174.
K. Sugimoto, F. Moriyasu, H. Takeuchi, M. Ando, T. Sano, T. Mori, Y. Furuichi, Y. Kobayashi, I. Nakamura, Case study to assess the safety of irreversible electroporation near the heart, Springerplus, 4 (2015).
Sugrue A, Maor E, Ivorra A, Vaidya V, Witt C, Kapa S, Asirvatham S (2018) Irreversible electroporation for the treatment of cardiac arrhythmias. Expert Rev Cardiovasc Ther 16:349–360
doi: 10.1080/14779072.2018.1459185
Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306
doi: 10.1016/S0006-3495(91)82054-9
Weaver JC (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 51:426–435
doi: 10.1002/jcb.2400510407
Weaver JC (1994) Molecular basis for cell membrane electroporationa. Ann N Y Acad Sci 720:141–152
doi: 10.1111/j.1749-6632.1994.tb30442.x
Wichtowski M, Murawa D (2018) Electrochemotherapy in the treatment of melanoma. Contemp Oncol (Pozn) 22:8–13
Wojtaszczyk A, Caluori G, Pesl M, Melajova K, Starek Z (2018) Irreversible electroporation ablation for atrial fibrillation. J Cardiovasc Electrophysiol 29:643–651
doi: 10.1111/jce.13454