Centrifugal projections to the main olfactory bulb revealed by transsynaptic retrograde tracing in mice.
cholera toxin ß subunit
feeding behavior
odor processing
pseudorabies virus
reward
Journal
The Journal of comparative neurology
ISSN: 1096-9861
Titre abrégé: J Comp Neurol
Pays: United States
ID NLM: 0406041
Informations de publication
Date de publication:
15 07 2020
15 07 2020
Historique:
received:
05
06
2019
revised:
26
11
2019
accepted:
29
11
2019
pubmed:
25
12
2019
medline:
3
11
2021
entrez:
25
12
2019
Statut:
ppublish
Résumé
A wide range of evidence indicates that olfactory perception is strongly involved in food intake. However, the polysynaptic circuitry linking the brain areas involved in feeding behavior to the olfactory regions is not well known. The aim of this article was to examine such circuits. Thus, we described, using hodological tools such as transsynaptic viruses (PRV152) transported in a retrograde manner, the long-distance indirect projections (two to three synapses) onto the main olfactory bulb (MOB). The ß-subunit of the cholera toxin which is a monosynaptic retrograde tracer was used as a control to be able to differentiate between direct and indirect projections. Our tracing experiments showed that the arcuate nucleus of the hypothalamus, as a major site for regulation of food intake, sends only very indirect projections onto the MOB. Indirect projections to MOB also originate from the solitary nucleus which is involved in energy homeostasis. Other indirect projections have been evidenced in areas of the reward circuit such as VTA and accumbens nucleus. In contrast, direct projections to the MOB arise from melanin-concentrating hormone and orexin neurons in the lateral hypothalamus. Functional significances of these projections are discussed in relation to the role of food odors in feeding and reward-related behavior.
Substances chimiques
Fluorescent Dyes
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1805-1819Informations de copyright
© 2019 Wiley Periodicals, Inc.
Références
Abbott, S. B. G., DePuys, S. D., Nguyen, T., Coates, M., Stornetta, R. L., & Guyenet, P. G. (2013). Selective optgenetic activation of rostral ventrolateral medullary catecholaminergic neurons produces cardiorespiratory stimulation in conscious mice. The Journal of Neuroscience, 33(7), 3164-3177.
Ahima, R. S., & Antwi, D. A. (2008). Brain regulation of appetite and satiety. Endocrinology and Metabolism Clinics of North America, 37(4), 811-823. http://doi.org/10.1016/j.ecl.2008.08.005
Aqrabawi, A., Browne, C., Dargaei, Z., Garand, D., Khademullah, C., Woodin, M., & Kim, J. (2016). Top-down modulation of olfactory-guided behaviours by the anterior olfactory nucleus pars medialis and ventral hippocampus. Nature Communications, 7(13721), 1-9. http://doi.org/10.1038/ncomms13721
Aston-Jones, G., & Waterhouse, B. (2016). Locus coeruleus: From global projection system to adaptive regulation of behavior. Brain Research, 1645, 75-78. http://doi.org/10.1016/j.brainres.2016.03.001
Barbier, M., Chometon, S., Peterschmitt, Y., Fellmann, D., & Risold, P. Y. (2017). Parasubthalamic and calbindin nuclei in the posterior lateral hypothalamus are the major hypothalamic target for projections from the central and anterior basomedial nuclei of amygdala. Brain Structure and Function, 222, 2961-2991.
Barragán, E., & Ferreyra-Moyano, H. (1988). Electrophysiological connections of neurons in ventral pallidal regions of the olfactory tubercle with the main olfactory bulb and piriform cortex. Neuroscience Letters, 93(2-3), 214-219. http://doi.org/10.1016/0304-3940(88)90084-5
Bellinger, L. L., & Bernardis, L. L. (2002). The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: Lessons learned from lesioning studies. Physiology and Behavior, 76(3), 431-432.
Bernardis, L. L., & Bellinger, L. L. (1996). The lateral hypothalamic area revisited: Ingestive behavior. Neuroscience and Biobehavioral Reviews, 20(2), 189-287. http://doi.org/10.1016/0149-7634(95)00015-1
Boldogköi, Z., Sík, A., Dénes, Á., Reichart, A., Toldi, J., Gerendai, I., … Palkovits, M. (2004). Novel tracing paradigms-Genetically engineered herpes viruses as tools for mapping functional circuits within the CNS: Present status and future prospects. Progress in Neurobiology, 72(6), 417-445. http://doi.org/10.1016/j.pneurobio.2004.03.010
Boyd, A. M., Sturgill, J. F., Poo, C., & Isaacson, J. S. (2012). Cortical feedback control of olfactory bulb circuits. Neuron, 76(6), 1161-1174. http://doi.org/10.1016/j.neuron.2012.10.020
Cádiz-Moretti, B., Abellán-Álvaro, M., Pardo-Bellver, C., Martínez-García, F., & Lanuza, E. (2016). Afferent and efferent connections of the cortex-amygdala transition zone in mice. Frontiers in Neuroanatomy, 10, 1-18. http://doi.org/10.3389/fnana.2016.00125
Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience & Biobehavioral Reviews, 26(3), 321-352. http://doi.org/10.1016/S0149-7634(02)00007-6
Castro, D. C., & Berridge, K. C. (2017). Opioid and orexin hedonic hotspot in rat orbitofrontal cortex and insula. Proceedings of the National Academy of Sciences of the United States of America, 114(43), E9125-E9134. https://doi.org/10.1073/pnas.1705753114
Castro, D. C., Cole, S. L., & Berridge, K. C. (2015). Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: Interactions between homeostatic and reward circuitry. Frontiers in Systems Neuroscience, 9, 1-17. http://doi.org/10.3389/fnsys.2015.00090
Celio, M. R. (1990). Calbindin D-28K and parvalbumin in the rat nervous system. Neuroscience, 35, 375-475.
Chen, Y., Lin, Y. C., Kuo, T. W., & Knight, Z. A. (2015). Sensory detection of food rapidly modulates arcuate feeding circuits. Cell, 160(5), 829-841. http://doi.org/10.1016/j.cell.2015.01.033
Dardou, D., Datiche, F., & Cattarelli, M. (2006). Fos and Egr1 expression in the rat brain in response to olfactory cue after taste-potentiated odor aversion retrieval. Learning & Memory, 13(2), 150-160. http://doi.org/10.1101/lm.148706
Datiche, F., Luppi, P. N., & Cattarelli, M. (1995). Projection from nucleus reuniens thalami to piriform cortex: A tracing study in the rat. Brain Research Bulletin, 38(1), 87-92. http://doi.org/10.1016/0361-9230(95)00075-P
Duclaux, R., Feisthauer, J., & Cabanac, M. (1973). Effets du repas sur l'agrément d'odeurs alimentaires et non alimentaires chez l'homme. Physiology & Behavior, 10, 1029-1033.
Elias, C. F., Aschkenasi, C., Lee, C., Kelly, J., Ahima, R. S., Bjorbaek, C., & Elmquist, J. K. (1999). Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron, 23(4), 775-786. http://doi.org/10.1016/S0896-6273(01)80035-0
Enquist, L. W., & Card, J. P. (2003). Recent advances in the use of neurotropic viruses for circuit analysis. Current Opinion in Neurobiology, 13(5), 603-606. http://doi.org/10.1016/j.conb.2003.08.001
Ericson, H., Blomqvist, A., & Kohler, C. (1991). Origin of neuronal inputs to the region of the tuberomammillary nucleus of the rat brain. Journal of Comparative Neurology, 311(1), 45-64. http://doi.org/10.1002/cne.903110105
Fanselow, M. S., & Dong, H. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65(1), 7-19.
Fields, H. L., Hjelmstad, G. O., Margolis, E. B., & Nicola, S. M. (2007). Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annual Review of Neuroscience, 30, 289-316.
Franklin, K. B. J., & Paxinos, G. (2007). The mouse brain in stereotaxic coordinates (3rd ed.). Amsterdam, the Netherlands: Elsevier Academic.
Gascuel, J., Lemoine, A., Rigault, C., Datiche, F., Benani, A., Pénicaud, L., & Lopez-Mascaraque, L. (2012). Hypothalamus-olfactory system crosstalk: Orexin A immunostaining in mice. Frontiers in Neuroanatomy, 6(44), 1-11. http://doi.org/10.3389/fnana.2012.00044
González, J. A., Iordanidou, P., Strom, M., Adamantidis, A., Burdakov, D., & Figure, S. (2016). Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nature Communications, 7(c), 11395. http://doi.org/10.1038/ncomms11395
Grill, H. J., & Hayes, M. R. (2012). Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metabolism, 16(3), 296-309. http://doi.org/10.1016/j.cmet.2012.06.015
Guevara-Aguilar, R., & Aguilar-Baturoni, H. U. (1978). Olfactory pathway evoked potentials in response to hypothalamic stimulation. Brain Research Bulletin, 3(5), 467-474. http://doi.org/10.1016/0361-9230(78)90076-X
Guevara-Aguilar, R., Donatti-Albarran, O. A., Solano-Flores, L. P., & Wayner, M. J. (1987). Nucleus of the tractus solitarius projections to the olfactory tubercle: An HRP study. Brain Research Bulletin, 18(5), 673-675. http://doi.org/10.1016/0361-9230(87)90138-9
Hawley, D. F., Morch, K., Christie, B. R., & Leasure, J. L. (2012). Differential response of hippocampal subregions to stress and learning. PLoS One, 7(12), e53126. http://doi.org/10.1371/journal.pone.0053126
Hintiryan, H., Gou, L., Zingg, B., Yamashita, S., Lyden, H. M., Song, M. Y., … Dong, H.-W. (2012). Comprehensive connectivity of the mouse main olfactory bulb: Analysis and online digital atlas. Frontiers in Neuroanatomy, 6, 1-16. http://doi.org/10.3389/fnana.2012.00030
Höglinger, G. U., Alvarez-Fischer, D., Arias-Carrión, O., Djufri, M., Windolph, A., Keber, U., … Oertel, W. H. (2015). A new dopaminergic nigro-olfactory projection. Acta Neuropathologica, 130(3), 333-348. http://doi.org/10.1007/s00401-015-1451-y
Hurley, K. M., Herbert, H., Moga, M. M., & Saper, C. B. (1991). Efferent projections of the infralimbic cortex of the rat. The Journal of Comparative Neurology, 308(2), 249-276. http://doi.org/10.1002/cne.903080210
In't Zandt, E. E., Cansler, H. L., Denson, H. B., & Wesson, D. W. (2019). Centrifugal innervation of the olfactory bulb: A reappraisal. eNeuro, 6(1), 1-12.
Kincheski, G. C., Mota-Ortiz, S. R., Pavesi, E., Canteras, N. S., & Carobrez, A. P. (2012). The dorsolateral periaqueductal gray and its role in mediating fear learning to life threatening events. PLoS One, 7(11), e50361. http://doi.org/10.1371/journal.pone.0050361
Kirouac, G. J. (2015). Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neuroscience and Biobehavioral Reviews, 56, 315-329. http://doi.org/10.1016/j.neubiorev.2015.08.005
Kulkarni, P., Stolberg, T., Sullivan, J. M., Jr., & Ferris, C. F. (2012). Imaging evolutionarily conserved neural networks: Preferential activation of the olfactory system by food-related odor. Behavioural Brain Research, 230(1), 201-207. http://doi.org/10.1016/j.bbr.2012.02.002
Lee, J. S., Lee, E. Y., & Lee, H. S. (2015). Hypothalamic, feeding/arousal-related peptidergic projections to the paraventricular thalamic nucleus in the rat. Brain Research, 1598, 97-113. http://doi.org/10.1016/j.brainres.2014.12.029
Luppi, P. H., Fort, P., & Jouvet, M. (1990). Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: A method for transmitter identification of retrogradely labeled neurons. Brain Research, 534(1-2), 209-224.
Martin, F., Laorden, M. L., & Milanes, M. V. (2009). Morphin withdrawal regulates phosphorylation of cAMP responses elements binding protein (CREB) through PKC in the nucleus tractus solitarius-A2 catecholaminergic neurons. Journal of Neurochemistry, 110(5), 1422-1432.
Matsutani, S., & Yamamoto, N. (2008). Centrifugal innervation of the mammalian olfactory bulb. Anatomical Science International, 83(4), 218-227. http://doi.org/10.1111/j.1447-073x.2007.00223.x
McLean, J. H., Shipley, M. T., Nickell, W. T., Aston-Jones, G., & Reyher, C. K. (1989). Chemoanatomical organization of the noradrenergic input from locus coeruleus to the olfactory bulb of the adult rat. The Journal of Comparative Neurology, 285(3), 339-349.
Miyamichi, K., Amat, F., Moussavi, F., Wang, C., Wickersham, I., Wall, N. R., … Luo, L. (2011). Cortical representations of olfactory input by transsynaptic tracing. Nature, 472(7342), 191-196. http://doi.org/10.1038/nature09714
Nakahara, K., Fukui, K., & Murakami, N. (2004). Involvement of thalamic paraventricular nucleus in the anticipatory reaction under food restriction in the rat. The Journal of Veterinary Medical Science, 66(10), 1297-1300.
Pager, J., Giachetti, I., Holley, A., & Le Magnen, J. (1972). A selective control of olfactory bulb electrical activity in relation to food deprivation and satiety in rats. Physiology & Behavior, 9(4), 573-579. http://doi.org/10.1016/0031-9384(72)90014-5
Palouzier-Paulignan, B., Lacroix, M. C., Aimé, P., Baly, C., Caillol, M., Congar, P., … Fadool, D. A. (2012). Olfaction under metabolic influences. Chemical Senses, 37(9), 769-797. http://doi.org/10.1093/chemse/bjs059
Peyron, C., Tighe, D. K., van den Pol, A. N., de Lecea, L., Heller, H. C., Sutcliffe, J. G., & Kilduff, T. S. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. The Journal of Neuroscience, 18(23), 9996-10015. http://doi.org/10.1.1.335.5389
Rolls, B. J., Rolls, E. T., Rowe, E. A., & Sweeney, K. (1981). Sensory specific satiety in man. Physiology and Behavior, 27(1), 137-142. http://doi.org/10.1016/0031-9384(81)90310-3
Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H., … Yanaqisawa, M. (1998). Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92, 573-585. http://doi.org/10.1016/S0092-8674(00)80949-6
Sakurai, T., Mieda, M., & Tsujino, N. (2010). The orexin system: Roles in sleep/wake regulation. Annals of the New York Academy of Sciences, 1200, 149-161. http://doi.org/10.1111/j.1749-6632.2010.05513.x
Scalia, F., & Winans, S. S. (1975). The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. Journal of Comparative Neurology, 161(1), 31-55.
Sevelinges, Y., Lévy, F., Mouly, A.-M., & Ferreira, G. (2009). Rearing with artificially scented mothers attenuates conditioned odor aversion in adulthood but not its amygdala dependency. Behavioural Brain Research, 198(2), 313-320. http://doi.org/10.1016/j.bbr.2008.11.003
Shipley, M. T., & Adamek, G. D. (1984). The connections of the mouse olfactory-bulb-A study using orthograde and retrograde transport of wheat-germ-agglutinin conjugated to horseradish-peroxidase. Brain Research Bulletin, 12(6), 669-688. http://doi.org/10.1016/0361-9230(84)90148-5
Shipley, M. T., & Ennis, M. (1996). Functional organization of olfactory system. Journal of Neurobiology, 30, 123-176.
Smith, G. A., & Enquist, L. W. (2000). A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 97, 4873-4878.
Stamatakis, A. M., Van Swieten, M., Basiri, M. L., Blair, G. A., Kantak, P., & Stuber, G. D. (2016). Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. Journal of Neuroscience, 36(2), 302-311. http://doi.org/10.1523/JNEUROSCI.1202-15.2016
Steidl, S., & Veverka, K. (2015). Optogenetic excitation of LDTg axons in the VTA reinforces operant responding in rats. Brain Research, 1614, 86-93. http://doi.org/10.1016/j.brainres.2015.04.021
Steinfeld, R., Herb, J. T., Sprengel, R., Schaefer, A. T., & Fukunaga, I. (2015). Divergent innervation of the olfactory bulb by distinct raphe nuclei. Journal of Comparative Neurology, 523(5), 805-813. http://doi.org/10.1002/cne.23713
Stuber, G. D., & Wise, R. A. (2016). Lateral hypothalamic circuits for feeding and reward. Nature Neuroscience, 19(2), 198-205. http://doi.org/10.1038/nn.4220
Sutherland, R. J. (1982). The dorsal diencephalic conduction system: A review of the anatomy and functions of the habenular complex. Neuroscience & Biobehavioral Reviews, 6(1), 1-13. http://doi.org/10.1016/0149-7634(82)90003-3
Van Groen, T., & Wyss, J. M. (1990). Extrinsic projections from area CA1 of the rat hippocampus: Olfactory, cortical, subcortical, and bilateral hippocampal formation projections. Journal of Comparative Neurology, 302(3), 515-528. http://doi.org/10.1002/cne.903020308
Varela, C., Kumar, S., Yang, J. Y., & Wilson, M. A. (2014). Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Structure and Function, 219(3), 911-929. http://doi.org/10.1007/s00429-013-0543-5
Vertes, R. P., Linley, S. B., & Hoover, W. B. (2015). Limbic circuitry of the midline thalamus. Neuroscience and Biobehavioral Reviews, 54, 89-107. http://doi.org/10.1016/j.neubiorev.2015.01.014
Wen, P., Rao, X., Xu, L., Zhang, Z., Jia, F., He, X., & Xu, F. (2019). Cortical organization of centrifugal afferents to the olfactory bulb: Mono- and trans-synaptic tracing with recombinant neurotropic viral tracers. Neuroscience Bulletin, 35, 709-723. http://doi.org/10.1007/s12264/019/00385-6
Xiao, C., Cho, J. R., Zhou, C., Treweek, J. B., Chan, K., McKinney, S. L., … Gradinaru, V. (2016). Cholinergic mesopontin signals governs locomotion and reward through dissociable midbrain pathways. Neuron, 90(2), 3333-3347.
Zaborszky, L., Carlsen, J., Brashear, H. R., & Heimer, L. (1986). Cholinergic and gabaergic afferents to the olfactory-bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. Journal of Comparative Neurology, 243(4), 488-509.