Cell wall-anchored 5'-nucleotidases in Gram-positive cocci.


Journal

Molecular microbiology
ISSN: 1365-2958
Titre abrégé: Mol Microbiol
Pays: England
ID NLM: 8712028

Informations de publication

Date de publication:
04 2020
Historique:
received: 29 10 2019
revised: 17 12 2019
accepted: 18 12 2019
pubmed: 25 12 2019
medline: 4 2 2021
entrez: 25 12 2019
Statut: ppublish

Résumé

5'-nucleotidases (5'-NTs) are enzymes that catalyze the hydrolysis of nucleoside monophosphates to produce nucleosides and phosphate. Since the identification of adenosine synthase A (AdsA) in Staphylococcus aureus in 2009, several other 5'-NTs have been discovered in Gram-positive cocci, mainly in streptococci. Despite some differences in substrate specificity, pH range and metal ion requirements, all characterized 5'-NTs use AMP and ADP, and in some cases ATP, to produce the immunosuppressive adenosine, which dampens pro-inflammatory immune responses. Several 5'-NTs are also able to use dAMP as substrate to generate deoxy-adenosine which is cytotoxic for macrophages. A synergy between 5'-NTs and exonucleases which are commonly expressed in Gram-positive cocci has been described, where the nucleases provide dAMP as a cleavage product from DNA. Some of these nucleases produce dAMP by degrading the DNA backbone of neutrophil extracellular traps (NETs) resulting in a "double hit" strategy of immune evasion. This Micro Review provides an overview of the biochemical properties of Gram-positive cell wall-anchored 5'-NTs and their role as virulence factors. A potential use of 5'-NTs for vaccine development is also briefly discussed.

Identifiants

pubmed: 31872460
doi: 10.1111/mmi.14442
doi:

Substances chimiques

Virulence Factors 0
5'-Nucleotidase EC 3.1.3.5

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

691-698

Informations de copyright

© 2020 John Wiley & Sons Ltd.

Références

Alam, M. S., Costales, M. G., Cavanaugh, C., & Williams, K. (2015). Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization. Biomolecules, 5, 775-792. https://doi.org/10.3390/biom5020775
Alam, M. S., Kuo, J. L., Ernst, P. B., Derr-Castillo, V., Pereira, M., Gaines, D., … Williams, K. (2014). Ecto-5′-nucleotidase (CD73) regulates host inflammatory responses and exacerbates murine salmonellosis. Scientific Reports, 4, 4486. https://doi.org/10.1038/srep04486
Bensi, G., Mora, M., Tuscano, G., Biagini, M., Chiarot, E., Bombaci, M., … Grandi, G. (2012). Multi high-throughput approach for highly selective identification of vaccine candidates: The Group A Streptococcus case. Molecular & Cellular Proteomics, 11(M111), 015693. https://doi.org/10.1074/mcp.M111.015693
Berends, E. T., Horswill, A. R., Haste, N. M., Monestier, M., Nizet, V., & von Kockritz-Blickwede, M. (2010). Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. Journal of Innate Immunity, 2, 576-586. https://doi.org/10.1159/000319909
Bettio, L. E., Gil-Mohapel, J., & Rodrigues, A. L. (2016). Guanosine and its role in neuropathologies. Purinergic Signal, 12, 411-426. https://doi.org/10.1007/s11302-016-9509-4
Bono, M. R., Fernandez, D., Flores-Santibanez, F., Rosemblatt, M., & Sauma, D. (2015). CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression. FEBS Letters, 589, 3454-3460. https://doi.org/10.1016/j.febslet.2015.07.027
Bouma, M. G., Jeunhomme, T. M., Boyle, D. L., Dentener, M. A., Voitenok, N. N., van den Wildenberg, F. A., & Buurman, W. A. (1997). Adenosine inhibits neutrophil degranulation in activated human whole blood: Involvement of adenosine A2 and A3 receptors. The Journal of Immunology, 158, 5400-5408.
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., … Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science, 303, 1532-1535. https://doi.org/10.1126/science.1092385
Cekic, C., & Linden, J. (2016). Purinergic regulation of the immune system. Nature Reviews Immunology, 16, 177-192. https://doi.org/10.1038/nri.2016.4
Chang, A., Khemlani, A., Kang, H., & Proft, T. (2011). Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor. Molecular Microbiology, 79, 1629-1642. https://doi.org/10.1111/j.1365-2958.2011.07550.x
Cronstein, B. N., Kramer, S. B., Weissmann, G., & Hirschhorn, R. (1983). Adenosine: A physiological modulator of superoxide anion generation by human neutrophils. Journal of Experimental Medicine, 158, 1160-1177. https://doi.org/10.1084/jem.158.4.1160
Dai, J., Lai, L., Tang, H., Wang, W., Wang, S., Lu, C., … Wu, Z. (2018). Streptococcus suis synthesizes deoxyadenosine and adenosine by 5′-nucleotidase to dampen host immune responses. Virulence, 9, 1509-1520.
Dangel, M. L., Dettmann, J. C., Hasselbarth, S., Krogull, M., Schakat, M., Kreikemeyer, B., & Fiedler, T. (2019). The 5′-nucleotidase S5nA is dispensable for evasion of phagocytosis and biofilm formation in Streptococcus pyogenes. PLoS ONE, 14, e0211074. https://doi.org/10.1371/journal.pone.0211074
de Buhr, N., Neumann, A., Jerjomiceva, N., von Kockritz-Blickwede, M., & Baums, C. G. (2014). Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity. Microbiology, 160, 385-395. https://doi.org/10.1099/mic.0.072199-0
Deng, J., Wang, X., Zhang, B. Z., Gao, P., Lin, Q., Kao, R. Y., … Huang, J. D. (2019). Broad and effective protection against Staphylococcus aureus is elicited by a multivalent vaccine formulated with novel antigens. mSphere, 4, e00362-19.
Derre-Bobillot, A., Cortes-Perez, N. G., Yamamoto, Y., Kharrat, P., Couve, E., Da Cunha, V., … Gaudu, P. (2013). Nuclease A (Gbs0661), an extracellular nuclease of Streptococcus agalactiae, attacks the neutrophil extracellular traps and is needed for full virulence. Molecular Microbiology, 89, 518-531.
Edwards, C. K. 3rd, Watts, L. M., Parmely, M. J., Linnik, M. D., Long, R. E., & Borcherding, D. R. (1994). Effect of the carbocyclic nucleoside analogue MDL 201,112 on inhibition of interferon-gamma-induced priming of Lewis (LEW/N) rat macrophages for enhanced respiratory burst and MHC class II Ia+ antigen expression. Journal of Leukocyte Biology, 56, 133-144.
Fan, J., Zhang, Y., Chuang-Smith, O. N., Frank, K. L., Guenther, B. D., Kern, M., … Herzberg, M. C. (2012). Ecto-5′-nucleotidase: A candidate virulence factor in Streptococcus sanguinis experimental endocarditis. PLoS ONE, 7, e38059. https://doi.org/10.1371/journal.pone.0038059
Firon, A., Dinis, M., Raynal, B., Poyart, C., Trieu-Cuot, P., & Kaminski, P. A. (2014). Extracellular nucleotide catabolism by the Group B Streptococcus ectonucleotidase NudP increases bacterial survival in blood. Journal of Biological Chemistry, 289, 5479-5489.
Hasko, G., Szabo, C., Nemeth, Z. H., Kvetan, V., Pastores, S. M., & Vizi, E. S. (1996). Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. The Journal of Immunology, 157, 4634-4640.
Hays, R. C., & Mandell, G. L. (1974). PO2, pH, and redox potential of experimental abscesses. Proceedings of the Society for Experimental Biology and Medicine, 147, 29-30. https://doi.org/10.3181/00379727-147-38275
Herzberg, M. C., MacFarlane, G. D., Gong, K., Armstrong, N. N., Witt, A. R., Erickson, P. R., & Meyer, M. W. (1992). The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infection and Immunity, 60, 4809-4818.
Heuts, D. P., Weissenborn, M. J., Olkhov, R. V., Shaw, A. M., Gummadova, J., Levy, C., & Scrutton, N. S. (2012). Crystal structure of a soluble form of human CD73 with ecto-5′-nucleotidase activity. ChemBioChem, 13, 2384-2391. https://doi.org/10.1002/cbic.201200426
Hirose, Y., Yamaguchi, M., Okuzaki, D., Motooka, D., Hamamoto, H., Hanada, T., … Kawabata, S. (2019). Streptococcus pyogenes transcriptome changes in the inflammatory environment of necrotizing fasciitis. Applied and Environment Microbiology, 85, e01428-19.
Kumar, V., & Sharma, A. (2009). Adenosine: An endogenous modulator of innate immune system with therapeutic potential. European Journal of Pharmacology, 616, 7-15. https://doi.org/10.1016/j.ejphar.2009.05.005
Li, Z., Chang, P., Xu, J., Tan, C., Wang, X., Bei, W., & Li, J. (2019). A Streptococcus suis live vaccine suppresses streptococcal toxic shock-like syndrome and provides sequence type-independent protection. Journal of Infectious Diseases, 219, 448-458.
Liu, P., Pian, Y., Li, X., Liu, R., Xie, W., Zhang, C., … Yuan, Y. (2014). Streptococcus suis adenosine synthase functions as an effector in evasion of PMN-mediated innate immunit. Journal of Infectious Diseases, 210, 35-45.
Ma, F., Guo, X., & Fan, H. (2017). Extracellular nucleases of Streptococcus equi subsp. zooepidemicus degrade neutrophil extracellular traps and impair macrophage activity of the host. Applied and Environmental Microbiology, 83, e02468-16.
Marraffini, L. A., Dedent, A. C., & Schneewind, O. (2006). Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiology and Molecular Biology Reviews, 70, 192-221. https://doi.org/10.1128/MMBR.70.1.192-221.2006
Morita, C., Sumioka, R., Nakata, M., Okahashi, N., Wada, S., Yamashiro, T., … Kawabata, S. (2014). Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity. PLoS ONE, 9, e103125. https://doi.org/10.1371/journal.pone.0103125
Niitsu, N., Yamaguchi, Y., Umeda, M., & Honma, Y. (1998). Human monocytoid leukemia cells are highly sensitive to apoptosis induced by 2'-deoxycoformycin and 2'-deoxyadenosine: Association with dATP-dependent activation of caspase-3. Blood, 92, 3368-3375. https://doi.org/10.1182/blood.V92.9.3368
Soh, K. Y., Loh, J. M. S., & Proft, T. (2018). Orthologues of Streptococcus pyogenes nuclease A (SpnA) and Streptococcal 5′-nucleotidase A (S5nA) found in Streptococcus iniae. Journal of Biochemistry, 164, 165-171. https://doi.org/10.1093/jb/mvy039
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
Takenaka, M. C., Robson, S., & Quintana, F. J. (2016). Regulation of the T cell response by CD39. Trends in Immunology, 37, 427-439. https://doi.org/10.1016/j.it.2016.04.009
Thammavongsa, V., Kern, J. W., Missiakas, D. M., & Schneewind, O. (2009). Staphylococcus aureus synthesizes adenosine to escape host immune responses. Journal of Experimental Medicine, 206, 2417-2427. https://doi.org/10.1084/jem.20090097
Thammavongsa, V., Missiakas, D. M., & Schneewind, O. (2013). Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science, 342, 863-866. https://doi.org/10.1126/science.1242255
Thammavongsa, V., Schneewind, O., & Missiakas, D. M. (2011). Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA). BMC Biochemistry, 12, 56. https://doi.org/10.1186/1471-2091-12-56
Winstel, V., Schneewind, O., & Missiakas, D. (2019). Staphylococcus aureus exploits the host apoptotic pathway to persist during infection. mBio, 10, e02270-19.
Xaus, J., Mirabet, M., Lloberas, J., Soler, C., Lluis, C., Franco, R., & Celada, A. (1999). IFN-gamma up-regulates the A2B adenosine receptor expression in macrophages: A mechanism of macrophage deactivation. The Journal of Immunology, 162, 3607-3614.
Zheng, L., Khemlani, A., Lorenz, N., Loh, J. M., Langley, R. J., & Proft, T. (2015). Streptococcal 5′-nucleotidase A (S5nA), a novel Streptococcus pyogenes virulence factor that facilitates immune evasion. Journal of Biological Chemistry, 290, 31126-31137.

Auteurs

Kar Yan Soh (KY)

Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.
Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand.

Jacelyn M S Loh (JMS)

Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.
Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand.

Thomas Proft (T)

Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand.
Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland, New Zealand.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH