Cell wall-anchored 5'-nucleotidases in Gram-positive cocci.
5′-NT
Gram-positive cocci
adenosine
cell wall-anchor
deoxy-adenosine
immune evasion
nucleotidase
secreted nuclease
virulence
Journal
Molecular microbiology
ISSN: 1365-2958
Titre abrégé: Mol Microbiol
Pays: England
ID NLM: 8712028
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
29
10
2019
revised:
17
12
2019
accepted:
18
12
2019
pubmed:
25
12
2019
medline:
4
2
2021
entrez:
25
12
2019
Statut:
ppublish
Résumé
5'-nucleotidases (5'-NTs) are enzymes that catalyze the hydrolysis of nucleoside monophosphates to produce nucleosides and phosphate. Since the identification of adenosine synthase A (AdsA) in Staphylococcus aureus in 2009, several other 5'-NTs have been discovered in Gram-positive cocci, mainly in streptococci. Despite some differences in substrate specificity, pH range and metal ion requirements, all characterized 5'-NTs use AMP and ADP, and in some cases ATP, to produce the immunosuppressive adenosine, which dampens pro-inflammatory immune responses. Several 5'-NTs are also able to use dAMP as substrate to generate deoxy-adenosine which is cytotoxic for macrophages. A synergy between 5'-NTs and exonucleases which are commonly expressed in Gram-positive cocci has been described, where the nucleases provide dAMP as a cleavage product from DNA. Some of these nucleases produce dAMP by degrading the DNA backbone of neutrophil extracellular traps (NETs) resulting in a "double hit" strategy of immune evasion. This Micro Review provides an overview of the biochemical properties of Gram-positive cell wall-anchored 5'-NTs and their role as virulence factors. A potential use of 5'-NTs for vaccine development is also briefly discussed.
Substances chimiques
Virulence Factors
0
5'-Nucleotidase
EC 3.1.3.5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
691-698Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
Alam, M. S., Costales, M. G., Cavanaugh, C., & Williams, K. (2015). Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization. Biomolecules, 5, 775-792. https://doi.org/10.3390/biom5020775
Alam, M. S., Kuo, J. L., Ernst, P. B., Derr-Castillo, V., Pereira, M., Gaines, D., … Williams, K. (2014). Ecto-5′-nucleotidase (CD73) regulates host inflammatory responses and exacerbates murine salmonellosis. Scientific Reports, 4, 4486. https://doi.org/10.1038/srep04486
Bensi, G., Mora, M., Tuscano, G., Biagini, M., Chiarot, E., Bombaci, M., … Grandi, G. (2012). Multi high-throughput approach for highly selective identification of vaccine candidates: The Group A Streptococcus case. Molecular & Cellular Proteomics, 11(M111), 015693. https://doi.org/10.1074/mcp.M111.015693
Berends, E. T., Horswill, A. R., Haste, N. M., Monestier, M., Nizet, V., & von Kockritz-Blickwede, M. (2010). Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. Journal of Innate Immunity, 2, 576-586. https://doi.org/10.1159/000319909
Bettio, L. E., Gil-Mohapel, J., & Rodrigues, A. L. (2016). Guanosine and its role in neuropathologies. Purinergic Signal, 12, 411-426. https://doi.org/10.1007/s11302-016-9509-4
Bono, M. R., Fernandez, D., Flores-Santibanez, F., Rosemblatt, M., & Sauma, D. (2015). CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression. FEBS Letters, 589, 3454-3460. https://doi.org/10.1016/j.febslet.2015.07.027
Bouma, M. G., Jeunhomme, T. M., Boyle, D. L., Dentener, M. A., Voitenok, N. N., van den Wildenberg, F. A., & Buurman, W. A. (1997). Adenosine inhibits neutrophil degranulation in activated human whole blood: Involvement of adenosine A2 and A3 receptors. The Journal of Immunology, 158, 5400-5408.
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., … Zychlinsky, A. (2004). Neutrophil extracellular traps kill bacteria. Science, 303, 1532-1535. https://doi.org/10.1126/science.1092385
Cekic, C., & Linden, J. (2016). Purinergic regulation of the immune system. Nature Reviews Immunology, 16, 177-192. https://doi.org/10.1038/nri.2016.4
Chang, A., Khemlani, A., Kang, H., & Proft, T. (2011). Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor. Molecular Microbiology, 79, 1629-1642. https://doi.org/10.1111/j.1365-2958.2011.07550.x
Cronstein, B. N., Kramer, S. B., Weissmann, G., & Hirschhorn, R. (1983). Adenosine: A physiological modulator of superoxide anion generation by human neutrophils. Journal of Experimental Medicine, 158, 1160-1177. https://doi.org/10.1084/jem.158.4.1160
Dai, J., Lai, L., Tang, H., Wang, W., Wang, S., Lu, C., … Wu, Z. (2018). Streptococcus suis synthesizes deoxyadenosine and adenosine by 5′-nucleotidase to dampen host immune responses. Virulence, 9, 1509-1520.
Dangel, M. L., Dettmann, J. C., Hasselbarth, S., Krogull, M., Schakat, M., Kreikemeyer, B., & Fiedler, T. (2019). The 5′-nucleotidase S5nA is dispensable for evasion of phagocytosis and biofilm formation in Streptococcus pyogenes. PLoS ONE, 14, e0211074. https://doi.org/10.1371/journal.pone.0211074
de Buhr, N., Neumann, A., Jerjomiceva, N., von Kockritz-Blickwede, M., & Baums, C. G. (2014). Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity. Microbiology, 160, 385-395. https://doi.org/10.1099/mic.0.072199-0
Deng, J., Wang, X., Zhang, B. Z., Gao, P., Lin, Q., Kao, R. Y., … Huang, J. D. (2019). Broad and effective protection against Staphylococcus aureus is elicited by a multivalent vaccine formulated with novel antigens. mSphere, 4, e00362-19.
Derre-Bobillot, A., Cortes-Perez, N. G., Yamamoto, Y., Kharrat, P., Couve, E., Da Cunha, V., … Gaudu, P. (2013). Nuclease A (Gbs0661), an extracellular nuclease of Streptococcus agalactiae, attacks the neutrophil extracellular traps and is needed for full virulence. Molecular Microbiology, 89, 518-531.
Edwards, C. K. 3rd, Watts, L. M., Parmely, M. J., Linnik, M. D., Long, R. E., & Borcherding, D. R. (1994). Effect of the carbocyclic nucleoside analogue MDL 201,112 on inhibition of interferon-gamma-induced priming of Lewis (LEW/N) rat macrophages for enhanced respiratory burst and MHC class II Ia+ antigen expression. Journal of Leukocyte Biology, 56, 133-144.
Fan, J., Zhang, Y., Chuang-Smith, O. N., Frank, K. L., Guenther, B. D., Kern, M., … Herzberg, M. C. (2012). Ecto-5′-nucleotidase: A candidate virulence factor in Streptococcus sanguinis experimental endocarditis. PLoS ONE, 7, e38059. https://doi.org/10.1371/journal.pone.0038059
Firon, A., Dinis, M., Raynal, B., Poyart, C., Trieu-Cuot, P., & Kaminski, P. A. (2014). Extracellular nucleotide catabolism by the Group B Streptococcus ectonucleotidase NudP increases bacterial survival in blood. Journal of Biological Chemistry, 289, 5479-5489.
Hasko, G., Szabo, C., Nemeth, Z. H., Kvetan, V., Pastores, S. M., & Vizi, E. S. (1996). Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. The Journal of Immunology, 157, 4634-4640.
Hays, R. C., & Mandell, G. L. (1974). PO2, pH, and redox potential of experimental abscesses. Proceedings of the Society for Experimental Biology and Medicine, 147, 29-30. https://doi.org/10.3181/00379727-147-38275
Herzberg, M. C., MacFarlane, G. D., Gong, K., Armstrong, N. N., Witt, A. R., Erickson, P. R., & Meyer, M. W. (1992). The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infection and Immunity, 60, 4809-4818.
Heuts, D. P., Weissenborn, M. J., Olkhov, R. V., Shaw, A. M., Gummadova, J., Levy, C., & Scrutton, N. S. (2012). Crystal structure of a soluble form of human CD73 with ecto-5′-nucleotidase activity. ChemBioChem, 13, 2384-2391. https://doi.org/10.1002/cbic.201200426
Hirose, Y., Yamaguchi, M., Okuzaki, D., Motooka, D., Hamamoto, H., Hanada, T., … Kawabata, S. (2019). Streptococcus pyogenes transcriptome changes in the inflammatory environment of necrotizing fasciitis. Applied and Environment Microbiology, 85, e01428-19.
Kumar, V., & Sharma, A. (2009). Adenosine: An endogenous modulator of innate immune system with therapeutic potential. European Journal of Pharmacology, 616, 7-15. https://doi.org/10.1016/j.ejphar.2009.05.005
Li, Z., Chang, P., Xu, J., Tan, C., Wang, X., Bei, W., & Li, J. (2019). A Streptococcus suis live vaccine suppresses streptococcal toxic shock-like syndrome and provides sequence type-independent protection. Journal of Infectious Diseases, 219, 448-458.
Liu, P., Pian, Y., Li, X., Liu, R., Xie, W., Zhang, C., … Yuan, Y. (2014). Streptococcus suis adenosine synthase functions as an effector in evasion of PMN-mediated innate immunit. Journal of Infectious Diseases, 210, 35-45.
Ma, F., Guo, X., & Fan, H. (2017). Extracellular nucleases of Streptococcus equi subsp. zooepidemicus degrade neutrophil extracellular traps and impair macrophage activity of the host. Applied and Environmental Microbiology, 83, e02468-16.
Marraffini, L. A., Dedent, A. C., & Schneewind, O. (2006). Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiology and Molecular Biology Reviews, 70, 192-221. https://doi.org/10.1128/MMBR.70.1.192-221.2006
Morita, C., Sumioka, R., Nakata, M., Okahashi, N., Wada, S., Yamashiro, T., … Kawabata, S. (2014). Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity. PLoS ONE, 9, e103125. https://doi.org/10.1371/journal.pone.0103125
Niitsu, N., Yamaguchi, Y., Umeda, M., & Honma, Y. (1998). Human monocytoid leukemia cells are highly sensitive to apoptosis induced by 2'-deoxycoformycin and 2'-deoxyadenosine: Association with dATP-dependent activation of caspase-3. Blood, 92, 3368-3375. https://doi.org/10.1182/blood.V92.9.3368
Soh, K. Y., Loh, J. M. S., & Proft, T. (2018). Orthologues of Streptococcus pyogenes nuclease A (SpnA) and Streptococcal 5′-nucleotidase A (S5nA) found in Streptococcus iniae. Journal of Biochemistry, 164, 165-171. https://doi.org/10.1093/jb/mvy039
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
Takenaka, M. C., Robson, S., & Quintana, F. J. (2016). Regulation of the T cell response by CD39. Trends in Immunology, 37, 427-439. https://doi.org/10.1016/j.it.2016.04.009
Thammavongsa, V., Kern, J. W., Missiakas, D. M., & Schneewind, O. (2009). Staphylococcus aureus synthesizes adenosine to escape host immune responses. Journal of Experimental Medicine, 206, 2417-2427. https://doi.org/10.1084/jem.20090097
Thammavongsa, V., Missiakas, D. M., & Schneewind, O. (2013). Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science, 342, 863-866. https://doi.org/10.1126/science.1242255
Thammavongsa, V., Schneewind, O., & Missiakas, D. M. (2011). Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA). BMC Biochemistry, 12, 56. https://doi.org/10.1186/1471-2091-12-56
Winstel, V., Schneewind, O., & Missiakas, D. (2019). Staphylococcus aureus exploits the host apoptotic pathway to persist during infection. mBio, 10, e02270-19.
Xaus, J., Mirabet, M., Lloberas, J., Soler, C., Lluis, C., Franco, R., & Celada, A. (1999). IFN-gamma up-regulates the A2B adenosine receptor expression in macrophages: A mechanism of macrophage deactivation. The Journal of Immunology, 162, 3607-3614.
Zheng, L., Khemlani, A., Lorenz, N., Loh, J. M., Langley, R. J., & Proft, T. (2015). Streptococcal 5′-nucleotidase A (S5nA), a novel Streptococcus pyogenes virulence factor that facilitates immune evasion. Journal of Biological Chemistry, 290, 31126-31137.