Dysfunction of the endothelium and constriction of the isolated rat's middle cerebral artery in low sodium environment in the presence of vasopressin.
Animals
Endothelin-1
/ metabolism
Endothelium, Vascular
/ drug effects
Hyponatremia
/ complications
In Vitro Techniques
Male
Middle Cerebral Artery
/ drug effects
Rats, Wistar
Receptors, Vasopressin
/ agonists
Sodium
/ deficiency
Thromboxane A2
/ metabolism
Vasoconstriction
/ drug effects
Vasoconstrictor Agents
/ pharmacology
Vasopressins
/ pharmacology
Vasospasm, Intracranial
/ etiology
endothelin-1
isolated middle cerebral artery
low sodium concentration
thromboxane A2
vasopressin
Journal
Clinical and experimental pharmacology & physiology
ISSN: 1440-1681
Titre abrégé: Clin Exp Pharmacol Physiol
Pays: Australia
ID NLM: 0425076
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
11
09
2019
revised:
18
12
2019
accepted:
20
12
2019
pubmed:
27
12
2019
medline:
14
7
2021
entrez:
27
12
2019
Statut:
ppublish
Résumé
Hyponatraemia, a water-electrolyte disorder diagnosed in patients with subarachnoid haemorrhage (SAH), increases a risk of persistent vasospasm. In majority of cases, hyponatraemia results from inappropriate secretion of vasopressin (AVP). The effect of AVP-associated hyponatraemia on cerebral vasculature is unknown. The present study aimed to elucidate the role of AVP in the response of the middle cerebral artery (MCA) of the rat to hyponatraemia. Isolated, cannulated, and pressurized rat MCAs were perfused/superfused with physiological (Na
Identifiants
pubmed: 31876005
doi: 10.1111/1440-1681.13242
doi:
Substances chimiques
Endothelin-1
0
Receptors, Vasopressin
0
Vasoconstrictor Agents
0
Vasopressins
11000-17-2
Thromboxane A2
57576-52-0
Sodium
9NEZ333N27
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
759-764Informations de copyright
© 2019 John Wiley & Sons Australia, Ltd.
Références
Rabinstein AA, Wijdicks EFM. Hyponatremia in critically ill neurological patients. Neurologist. 2003;9:290-300.
Kim DK, Joo KW. Hyponatremia in patients with neurologic disorders. Electrolyte Blood Press. 2009;7:51-57.
Fraser JF, Stieg PE. Hyponatremia in the neurosurgical patient: epidemiology, pathophysiology, diagnosis, and management. Neurosurgery. 2006;59:222-229.
Rabinstein AA. Vasopressin antagonism: potential impact on neurologic disease. Clin Neuropharmacol. 2006;29:87-93.
Sherlock M, O'Sullivan E, Agha A, et al. The incidence and pathophysiology of hyponatremia after subarachnoid heamorrhage. Clin Endocrinol (Oxf). 2006;64:250-254.
Mapa B, Taylor BES, Appelboom G, et al. Impact of hyponatremia on morbidity, mortality and complications after aneurysmal subarachnoid hemorrhage: a systematic review. World Neurosurg. 2016;85:305-314.
Hasan D, Wijdicks EFM, Vermeulen M. Hyponatremia is associated with cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Ann Neurol. 1990;27:106-108.
Wijdicks EFM, Vermeulen M, Hijdra A, van Gijn J. Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: Is fluid restriction harmful? Ann Neurol. 1985;17:137-140.
Mather HM, Ang V, Jenkins JS. Vasopressin in plasma and CSF of patients with subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 1981;44:216-219.
Hannon MJ, Behan LA, O'Brien MMC, et al. Hyponatremia following mild/moderate subarachnoid hemorrhage is due to SIAD and glucocorticoid deficiency and not cerebral salt waisting. J Clin Endocrinol Metab. 2014;99:291-298.
Fernandez SJ, Barakat I, Ziogas J, et al. Association of copeptin, a surrogate marker of arginine vasopressin, with cerebral vasospasm and delayed ischemic neurologic deficit after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2018;4:1-7.
Takayasu M, Kajita Y, Suzuki Y, et al. Triphasic response of rat intracerebral arterioles to increasing concentrations of vasopressin in vitro. J Cereb Blood Flow Metab. 1993;13:304-309.
Fernández N, Martínez MA, García-Villalón AL, et al. Cerebral vasoconstriction produced by vasopressin in conscious goats: role of vasopressin V(1) and V(2) receptors and nitric oxide. Br J Pharmacol. 2001;132:1837-1844.
Katusic ZS. Endothelial L-arginine pathway and regional cerebral arterial reactivity to vasopressin. Am J Physiol Circ Physiol. 1992;262:H1557-H1562.
Imai T, Hirata Y, Emori T, et al. Induction of endothelin-1 gene by angiotensin and vasopressin in endothelial cells. Hypertens. 1992;19:753-757.
Postma CT, Maessen SMJ, Thien T, Smits P. The effect of arginine vasopressin on endothelin production in the human forearm vascular bed. Neth J Med. 2005;63:199-204.
Spatz M, Stanimirovic D, Bacic F, et al. Vasoconstrictive peptides induce endothelin-1 and prostanoids in human cerebromicrovascular endothelium. Am J Physiol Physiol. 1994;266:C654-C660.
Faraco G, Wijasa TS, Park L, et al. Water deprivation induces neurovascular and cognitive dysfunction through vasopressin-induced oxidative stress. J Cereb Blood Flow Metab. 2014;34:852-860.
Szekacs B, Nadasy GL, Vajo Z, et al. Prostacyclin and thromboxane production of rat and cat arterial tissue is altered independently by several vasoactive substances. Prostaglandins. 1996;52:221-235.
Wackenfors A, Vikman P, Nilsson E, et al. Angiotensin II-induced vasodilatationin cerebral arteries is mediated by endothelium-derived hyperpolarising factor. Eur J Pharmacol. 2006;531:259-263.
Yang W, Huang J. Treatment of middle cerebral artery (MCA) aneurysms: a review of the literature. Chin Neurosurg J. 2015;1:1.
Chandy D, Sy R, Aronow WS, et al. Hyponatremia and cerebrovascular spasm in aneurysmal subarachnoid hemorrhage. Neurol India. 2006;54:273-275.
Marupudi N, Mittal S. Diagnosis and management of hyponatremia in patients with aneurysmal subarachnoid hemorrhage. J Clin Med. 2015;4:756-767.
Qureshi AI, Suri MFK, Sung GY, et al. Prognostic significance of hypernatremia and hyponatremia among patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2002;50:749-755.
Nishihashi T, Trandafir CC, Wang A, et al. Enhanced reactivity to vasopressin in rat basilar arteries during vasospasm after subarachnoid hemorrhage. Eur J Pharmacol. 2005;513:93-100.
Marr N, Yu J, Kutsogiannis DJ, Mahmoud SH. Risk of hyponatremia in patients with aneurysmal subarachnoid hemorrhage treated with exogenous vasopressin infusion. Neurocrit Care. 2017;26:182-190.
Verbalis JG. Hyponatremia induced by vasopressin or desmopressin in female and male rats. J Am Soc Nephrol. 1993;3:1600-1606.
Girouard H, Park L, Anrather J, et al. Cerebrovascular nitrosative stress mediates neurovascular and endothelial dysfunction induced by angiotensin II. Arterioscler Thromb Vasc Biol. 2007;27:303-309.
Vanhoutte PM, Katusić ZS, Shepherd JT. Vasopressin induces endothelium-dependent relaxations of cerebral and coronary, but not of systemic arteries. J Hypertens Suppl. 1984;2:S421-S422.
Suzuki Y, Satoh S, Oyama H, et al. Regional differences in the vasodilator response to vasopressin in canine cerebral arteries in vivo. Stroke. 1993;24:1049-1053.
Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:620-636.
Hadi HAR, Carr CS, Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1:183-198.
Reiter CD, Teng R-J, Beckman JS. Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J Biol Chem. 2000;275:32460-32466.
Faraci FM. Reactive oxygen species: influence on cerebral vascular tone. J Appl Physiol. 2006;100:739-743.
Zalba G, Fortuño A, San José G, et al. Oxidative stress, endothelial dysfunction and cerebrovascular disease. Cerebrovasc Dis. 2007;24:24-29.
Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction. Circ Res. 2008;102:488-496.
Emori T, Hirata Y, Ohta K, et al. Cellular mechanism of endothelin-1 release by angiotensin and vasopressin. Hypertension. 1991;18:165-170.
Thampatty BP, Sherwood PR, Gallek MJ, et al. Role of endothelin-1 in human aneurysmal subarachnoid hemorrhage: associations with vasospasm and delayed cerebral ischemia. Neurocrit Care. 2011;15:19-27.
Beasley RC, Featherstone RL, Church MK, et al. Effect of a thromboxane receptor antagonist on PGD2- and allergen-induced bronchoconstriction. J Appl Physiol. 1989;66:1685-1693.
Bauer J, Ripperger A, Frantz S, et al. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation. Br J Pharmacol. 2014;171:3115-3131.
Aleksandrowicz M, Dworakowska B, Dolowy K, Kozniewska E. Restoration of the response of the middle cerebral artery of the rat to acidosis in hyposmotic hyponatremia by the opener of large-conductance calcium sensitive potassium channels (BKCa). J Cereb Blood Flow Metab. 2017;37:3219-3230.