Organic Thermoelectric Multilayers with High Stretchiness.
carbon nanomaterials
layer-by-layer assembly
organic multilayers
power factor
stretchable thin films
thermoelectric multilayers
Journal
Nanomaterials (Basel, Switzerland)
ISSN: 2079-4991
Titre abrégé: Nanomaterials (Basel)
Pays: Switzerland
ID NLM: 101610216
Informations de publication
Date de publication:
23 Dec 2019
23 Dec 2019
Historique:
received:
01
12
2019
revised:
20
12
2019
accepted:
21
12
2019
entrez:
28
12
2019
pubmed:
28
12
2019
medline:
28
12
2019
Statut:
epublish
Résumé
A stretchable organic thermoelectric multilayer is achieved by alternately depositing bilayers (BL) of 0.1 wt% polyethylene oxide (PEO) and 0.03 wt% double walled carbon nanotubes (DWNT), dispersed with 0.1 wt% polyacrylic acid (PAA), by the layer-by-layer assembly technique. A 25 BL thin film (~500 nm thick), composed of a PEO/DWNT-PAA sequence, displays electrical conductivity of 19.6 S/cm and a Seebeck coefficient of 60 µV/K, which results in a power factor of 7.1 µW/m·K
Identifiants
pubmed: 31878005
pii: nano10010041
doi: 10.3390/nano10010041
pmc: PMC7023331
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Adv Mater. 2015 May 20;27(19):2996-3001
pubmed: 25845976
Langmuir. 2012 May 29;28(21):8100-9
pubmed: 22551218
J Am Chem Soc. 2005 Dec 14;127(49):17228-34
pubmed: 16332070
Nanomaterials (Basel). 2018 Jun 27;8(7):
pubmed: 29954140
Nanoscale. 2010 Oct;2(10):2084-90
pubmed: 20931147
ACS Nano. 2010 Nov 23;4(11):6557-64
pubmed: 20942443
Nanomaterials (Basel). 2019 May 02;9(5):
pubmed: 31052576
Nanomaterials (Basel). 2019 Nov 04;9(11):
pubmed: 31689966
Nanomaterials (Basel). 2018 Aug 29;8(9):
pubmed: 30158474
Biomaterials. 2008 Dec;29(34):4561-73
pubmed: 18790530
ACS Appl Mater Interfaces. 2017 Mar 8;9(9):7903-7907
pubmed: 28231430
Adv Mater. 2018 Mar;30(11):
pubmed: 29356158
Polymers (Basel). 2018 Oct 26;10(11):
pubmed: 30961121
Nanobiomedicine (Rij). 2014 Jan 1;1:8
pubmed: 30023019
Nanoscale. 2016 May 21;8(19):9890-918
pubmed: 27138455
ACS Nano. 2010 Jan 26;4(1):513-23
pubmed: 20041630
Phys Chem Chem Phys. 2017 Sep 13;19(35):23781-23789
pubmed: 28664946
Micromachines (Basel). 2018 Nov 30;9(12):
pubmed: 30513632
Langmuir. 2012 Jan 10;28(1):841-8
pubmed: 22070431
Langmuir. 2004 Jun 22;20(13):5403-11
pubmed: 15986679
Soft Matter. 2015 Feb 7;11(5):1001-7
pubmed: 25519816
ACS Appl Mater Interfaces. 2018 Apr 18;10(15):12773-12780
pubmed: 29582649
J Am Chem Soc. 2009 Jan 21;131(2):671-9
pubmed: 19105687
J Am Chem Soc. 2012 Jan 11;134(1):623-30
pubmed: 22098642
Biomater Res. 2018 Sep 26;22:29
pubmed: 30275972
Materials (Basel). 2019 May 09;12(9):
pubmed: 31075928
Adv Mater. 2016 Dec;28(45):9881-9919
pubmed: 27677428
ACS Nano. 2010 Apr 27;4(4):2445-51
pubmed: 20359234
Nanomaterials (Basel). 2019 Feb 06;9(2):
pubmed: 30736378
Ecotoxicol Environ Saf. 2019 Oct 15;181:525-533
pubmed: 31234067
Chem Rev. 2016 Dec 14;116(23):14828-14867
pubmed: 27960272
Biomed Mater. 2015 Sep 11;10(5):055006
pubmed: 26358683
Soft Matter. 2016 Jan 28;12(4):1032-40
pubmed: 26565521
ACS Nano. 2019 Jul 23;13(7):7905-7912
pubmed: 31244040
Sci Adv. 2018 Nov 02;4(11):eaau5849
pubmed: 30406207
Angew Chem Int Ed Engl. 2019 Oct 21;58(43):15206-15226
pubmed: 30785665