The Inhibitory Tendon-Evoked Reflex Is Increased in the Torque-Enhanced State Following Active Lengthening Compared to a Purely Isometric Contraction.
Golgi tendon organ
afferent
eccentric
electromyography
history dependence of force
residual force enhancement
Journal
Brain sciences
ISSN: 2076-3425
Titre abrégé: Brain Sci
Pays: Switzerland
ID NLM: 101598646
Informations de publication
Date de publication:
23 Dec 2019
23 Dec 2019
Historique:
received:
22
11
2019
revised:
16
12
2019
accepted:
18
12
2019
entrez:
28
12
2019
pubmed:
28
12
2019
medline:
28
12
2019
Statut:
epublish
Résumé
Residual torque enhancement (rTE) is a history-dependent property of muscle, which results in an increase in steady-state isometric torque production following an active lengthening contraction as compared to a purely isometric (ISO) contraction at the same muscle length and level of activation. Once thought to be only an intrinsic property of muscle, recent evidence during voluntary contractions indicates a neuromechanical coupling between motor neuron excitability and the contractile state of the muscle. However, the mechanism by which this occurs has yet to be elucidated. The purpose of this study was to investigate inhibition arising from tendon-mediated feedback (e.g., Golgi tendon organ; GTO) through tendon electrical stimulation (TStim) in the ISO and rTE states during activation-matching and torque-matching tasks. Fourteen male participants (22 ± 2 years) performed 10 activation-matching contractions at 40% of their maximum tibialis anterior electromyography amplitude (5 ISO/5 rTE) and 10 torque-matching contractions at 40% of their maximum dorsiflexion torque (5 ISO/5 rTE). During both tasks, 10 TStim were delivered during the isometric steady state of all contractions, and the resulting tendon-evoked inhibitory reflexes were averaged and analyzed. Reflex amplitude increased by ~23% in the rTE state compared to the ISO state for the activation-matching task, and no differences were detected for the torque-matching task. The current data indicate an important relationship between afferent feedback in the torque-enhanced state and voluntary control of submaximal contractions. The history-dependent properties of muscle is likely to alter motor neuron excitability through modifications in tension- or torque-mediated afferent feedback arising from the tendon.
Identifiants
pubmed: 31878094
pii: brainsci10010013
doi: 10.3390/brainsci10010013
pmc: PMC7016668
pii:
doi:
Types de publication
Journal Article
Langues
eng
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Physiol Rep. 2015 May;3(5):
pubmed: 25975646
Physiology (Bethesda). 2016 Jul;31(4):300-12
pubmed: 27252165
Exp Brain Res. 1987;68(3):643-56
pubmed: 3691733
J Appl Physiol (1985). 2005 Jun;98(6):2087-95
pubmed: 15705725
J Electromyogr Kinesiol. 2018 Aug;41:109-115
pubmed: 29879692
Brain. 1996 Aug;119 ( Pt 4):1107-14
pubmed: 8813275
J Electromyogr Kinesiol. 2015 Aug;25(4):571-80
pubmed: 25956547
J Physiol. 1952 May;117(1):77-86
pubmed: 14946730
Am J Physiol Cell Physiol. 2008 Jan;294(1):C74-8
pubmed: 17928540
J Appl Physiol (1985). 2019 May 1;126(5):1474-1482
pubmed: 30521425
J Biomech. 2019 Jun 25;91:164-169
pubmed: 31155213
J Electromyogr Kinesiol. 2016 Apr;27:30-8
pubmed: 26891078
J Neurophysiol. 2012 Jan;107(2):564-72
pubmed: 22031770
J Biomech. 2012 Jun 26;45(10):1835-41
pubmed: 22542219
J Exp Biol. 2017 Apr 15;220(Pt 8):1509-1515
pubmed: 28232399
Appl Physiol Nutr Metab. 2019 Nov 1;:
pubmed: 31675479
PLoS One. 2012;7(11):e49907
pubmed: 23166794
J Appl Physiol (1985). 2019 Apr 1;126(4):1066-1073
pubmed: 30653421
Prog Neurobiol. 1992;38(4):335-78
pubmed: 1315446
PeerJ. 2018 Aug 3;6:e5421
pubmed: 30083481
J Biomech. 2007;40(4):719-27
pubmed: 17097664
Brain. 1998 Feb;121 ( Pt 2):373-80
pubmed: 9549512
Physiol Rev. 1992 Jul;72(3):623-66
pubmed: 1626033
J Physiol. 2002 Nov 15;545(1):321-30
pubmed: 12433972
J Physiol. 1995 Sep 1;487 ( Pt 2):527-39
pubmed: 8558481
J Appl Physiol Respir Environ Exerc Physiol. 1981 Nov;51(5):1131-5
pubmed: 7298453
J Appl Physiol (1985). 2007 Jan;102(1):18-25
pubmed: 16946022
J Appl Biomech. 2018 Jun 1;34(3):240-248
pubmed: 29364041
J Biomech. 2018 Sep 10;78:70-76
pubmed: 30037580
Physiol Rev. 2001 Oct;81(4):1725-89
pubmed: 11581501
Physiol Rep. 2013 Jun;1(1):e00004
pubmed: 24303098
J Neurophysiol. 1967 May;30(3):466-81
pubmed: 6037588
J Physiol. 2017 Jul 1;595(13):4493-4506
pubmed: 28326567
Physiol Rep. 2013 Jul;1(2):e00017
pubmed: 24303106
Biophys Rev. 2018 Aug;10(4):1187-1199
pubmed: 29353351