Chemical content and source apportionment of 36 heavy metal analysis and health risk assessment in aerosol of Beijing.
Atmospheric radioactivity,
Enrichment factor,
Hazard quotient
Heavy metals,
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Mar 2020
Mar 2020
Historique:
received:
15
02
2019
accepted:
04
09
2019
pubmed:
28
12
2019
medline:
23
5
2020
entrez:
28
12
2019
Statut:
ppublish
Résumé
The concentration levels of 36 airborne heavy metals and atmospheric radioactivity in total suspended particulate (TSP) samples were measured to investigate the chemical characteristics, potential sources of aerosols, and health risk in Beijing, China, from September 2016 to September 2017. The TSP concentrations varied from 6.93 to 469.18 μg/m
Identifiants
pubmed: 31879890
doi: 10.1007/s11356-019-06427-w
pii: 10.1007/s11356-019-06427-w
doi:
Substances chimiques
Aerosols
0
Metals, Heavy
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7005-7014Subventions
Organisme : Special Fund for Scientific Research Projects of Beijing Municipal Center for Disease Prevention and Control/Beijing Research Center for Preventive Medicine
ID : 2016-BJYJ-18
Références
Beijing Municipal Ecological Environmental Bureau (2019) Real-time air quality (in Chinese). In: http//zx.bjmemc.com.cn/?timestamp = 1565074336255 (Accessed Auguest 24 2019)
Beijing Traffic Management Bureau (2019) Traffic management since 2000 (in Chinese). In: http//bjjtgl.gov.cn/jgj/ywsj/index.html (Accessed Auguest 3, 2019)
Betha R, Behera SN, Balasubramanian R (2014) 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk. Environ Sci Technol 48:4327–4335. https://doi.org/10.1021/es405533d
doi: 10.1021/es405533d
Bin C, Qianyuan C, Xiaofei WU, Hongfeng W (2007) Activity level of gross α and gross β in airborne aerosol samples around the Qinshan NPP. Nucl Sci Tech 18:176–180
doi: 10.1016/S1001-8042(07)60042-6
Butterman BWC, Brooks WE, Reese RG (2004) Cesium
Cai J, Wang J, Zhang Y et al (2017) Source apportionment of Pb-containing particles in Beijing during January 2013. Environ Pollut 226:30–40. https://doi.org/10.1016/j.envpol.2017.04.004
doi: 10.1016/j.envpol.2017.04.004
Chen L, Liang S, Liu M et al (2019) Trans-provincial health impacts of atmospheric mercury emissions in China. Nat Commun 10:1–12. https://doi.org/10.1038/s41467-019-09080-6
doi: 10.1038/s41467-019-09080-6
Dai S, Ren D, Chou CL et al (2012) Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. Int J Coal Geol 94:3–21. https://doi.org/10.1016/j.coal.2011.02.003
doi: 10.1016/j.coal.2011.02.003
Dehghani S, Moore F, Keshavarzi B, Hale BA (2017) Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicol Environ Saf 136:92–103. https://doi.org/10.1016/j.ecoenv.2016.10.037
doi: 10.1016/j.ecoenv.2016.10.037
Du Y, Gao B, Zhou H et al (2013) Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environ Sci 18:299–309. https://doi.org/10.1016/j.proenv.2013.04.039
doi: 10.1016/j.proenv.2013.04.039
Dueñas C, Fernández MC, Liger E, Carretero J (1999) Gross alpha, gross beta activities and 7Be concentrations in surface air: analysis of their variations and prediction model. Atmos Environ. https://doi.org/10.1016/S1352-2310(99)00172-7
doi: 10.1016/S1352-2310(99)00172-7
European Environment Agency (2018) Air quality in Europe
Gao Y, Yang C, Ma J, Yin M (2018) Characteristics of the trace elements and arsenic, iodine and bromine species in snow in east-central China. Atmos Environ 174:43–53. https://doi.org/10.1016/j.atmosenv.2017.11.015
doi: 10.1016/j.atmosenv.2017.11.015
García-Talavera M, Quintana B, García-Díez E, Fernández F (2001) Studies on radioactivity in aerosols as a function of meteorological variables in Salamanca (Spain). Atmos Environ 35:221–229. https://doi.org/10.1016/S1352-2310(00)00234-X
doi: 10.1016/S1352-2310(00)00234-X
Geiger A, Cooper J (2010) Overview of airborne metals regulations, exposure limits, health effects, and contemporary research. 1–50. https://doi.org/10.1212/01.CON.0000480843.89012.5b
He Y, Zeng Q, Zhao X (2016) Associations of body mass index and age with blood pressure among chi- nese adults(Chinese). Chin J Public Health 32:126–129
Hernández F, Hernández-Armas J, Catalán A et al (2005) Gross alpha, gross beta activities and gamma emitting radionuclides composition of airborne particulate samples in an oceanic island. Atmos Environ 39:4057–4066. https://doi.org/10.1016/j.atmosenv.2005.03.035
doi: 10.1016/j.atmosenv.2005.03.035
Hsu SC, Liu SC, Tsai F et al (2010) High wintertime particulate matter pollution over an offshore island (Kinmen) off southeastern China: an overview. J Geophys Res Atmos 115:1–17. https://doi.org/10.1029/2009JD013641
doi: 10.1029/2009JD013641
Hu X, Zhang Y, Ding Z et al (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 57:146–152. https://doi.org/10.1016/j.atmosenv.2012.04.056
doi: 10.1016/j.atmosenv.2012.04.056
Huang YJ, Tao YL, Lin J, Shang-Guan ZH (2009) Annual cycle of gross β activities in aerosol around Daya Bay area, China. Chemosphere 75:929–933. https://doi.org/10.1016/j.chemosphere.2009.01.022
doi: 10.1016/j.chemosphere.2009.01.022
Jie M, Xiaolei J, Xiaorui S, Li Y, he Hui KY (2017) Physical condition and development trend of 3~6 year old collective children in Beijing(Chinese). Matern Child Heal Care China 32:1–5
Jin Y, O’Connor D, Ok YS et al (2019) Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ Int 124:320–328. https://doi.org/10.1016/j.envint.2019.01.024
doi: 10.1016/j.envint.2019.01.024
Jung H, Kittelson DB, Zachariah MR (2005) The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation. Combust Flame 142:276–288. https://doi.org/10.1016/j.combustflame.2004.11.015
doi: 10.1016/j.combustflame.2004.11.015
Kicinska A, Bozecki P (2018) Metals and mineral phases of dusts collected in different urban parks of Krakow and their impact on the health of city residents. Environ Geochem Health 40:473–488. https://doi.org/10.1007/s10653-017-9934-5
doi: 10.1007/s10653-017-9934-5
Kilian J, Kitazawa M (2018) The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease – evidence from epidemiological and animal studies. Biom J 41:141–162. https://doi.org/10.1016/j.bj.2018.06.001
doi: 10.1016/j.bj.2018.06.001
Kittner N, Fadadu RP, Buckley HL et al (2018) Trace metal content of coal exacerbates air-pollution-related health risks: the case of lignite coal in Kosovo. Environ Sci Technol 52:2359–2367. https://doi.org/10.1021/acs.est.7b04254
doi: 10.1021/acs.est.7b04254
Langrish JP, Mills NL, Chan JKK et al (2009) Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask. Part Fibre Toxicol 6:1–9. https://doi.org/10.1186/1743-8977-6-8
doi: 10.1186/1743-8977-6-8
Li Tong NS (1997) Element abundances of the continental lithosphere in China (in Chinese). Geol Prospect 33:31–37
Li J, Chen L, Xiang Y, Xu M (2018a) Research on influential factors of PM2 . 5 within the Beijing-Tianjin-Hebei Region in China. 2018:
Li M, Wu Y, Tian YH et al (2018b) Association between PM2.5 and daily hospital admissions for heart failure: a time-series analysis in Beijing. Int J Environ Res Public Health 15. https://doi.org/10.3390/ijerph15102217
doi: 10.3390/ijerph15102217
Lin Y-C, Hsu S-C, CC-K C et al (2016) Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals. Environ Pollut 208:284–293. https://doi.org/10.1016/j.envpol.2015.07.044
doi: 10.1016/j.envpol.2015.07.044
Liu Y, Li S, Sun C et al (2018) Pollution level and health risk assessment of PM 2.5 -bound metals in baoding city before and after the heating period. Int J Environ Res Public Health 15:1–17. https://doi.org/10.3390/ijerph15102286
doi: 10.3390/ijerph15102286
Lyu Y, Zhang K, Chai F et al (2017) Atmospheric size-resolved trace elements in a city affected by non-ferrous metal smelting: indications of respiratory deposition and health risk. Environ Pollut 224:559–571. https://doi.org/10.1016/j.envpol.2017.02.039
doi: 10.1016/j.envpol.2017.02.039
Malinovsky G, Yarmoshenko I, Vasilyev A (2018) Meta-analysis of case-control studies on the relationship between lung cancer and indoor radon exposure. Radiat Environ Biophys 0:0. https://doi.org/10.1007/s00411-018-0770-5
doi: 10.1007/s00411-018-0770-5
Megido L, Suarez-Pena B, Negral L et al (2017) Suburban air quality: human health hazard assessment of potentially toxic elements in PM10. Chemosphere 177:284–291. https://doi.org/10.1016/j.chemosphere.2017.03.009
doi: 10.1016/j.chemosphere.2017.03.009
Men C, Liu R, Xu F et al (2018) Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci Total Environ 612:138–147. https://doi.org/10.1016/j.scitotenv.2017.08.123
doi: 10.1016/j.scitotenv.2017.08.123
Miller CM, Anderson IE, Smith JF (1994) A viable tin-lead solder substitute: Sn-Ag-Cu. J Electron Mater 23:595–601. https://doi.org/10.1007/BF02653344
doi: 10.1007/BF02653344
Ministry of Environmental Protection (China) (2012) GB 3095—2012 Ambient air quality standards(in Chinese)
Morishita M, Bard RL, Kaciroti N et al (2015) Exploration of the composition and sources of urban fine particulate matter associated with same-day cardiovascular health effects in Dearborn, Michigan. J Expo Sci Environ Epidemiol 25:145–152. https://doi.org/10.1038/jes.2014.35
doi: 10.1038/jes.2014.35
Mostofsky E, Schwartz J, Coull BA et al (2012) Modeling the association between particle constituents of air pollution and health outcomes. Am J Epidemiol 176:317–326. https://doi.org/10.1093/aje/kws018
doi: 10.1093/aje/kws018
Nischkauer W, Izmer A, Neouze M-A et al (2017) Combining dispersed particle extraction with dried-droplet laser ablation ICP-MS for determining platinum in airborne particulate matter. Appl Spectrosc 71:1613–1620. https://doi.org/10.1177/0003702817693240
doi: 10.1177/0003702817693240
Padoan E, Malandrino M, Giacomino A et al (2016) Spatial distribution and potential sources of trace elements in PM10 monitored in urban and rural sites of Piedmont Region. Chemosphere 145:495–507. https://doi.org/10.1016/j.chemosphere.2015.11.094
doi: 10.1016/j.chemosphere.2015.11.094
Rich DQ, Kipen HM, Huang W et al (2012) Association between changes in air pollution levels during the Beijing olympics and biomarkers of inflammation and thrombosis in healthy young adults. JAMA - J Am Med Assoc 307:2068–2078. https://doi.org/10.1001/jama.2012.3488
doi: 10.1001/jama.2012.3488
Shao L, Hu Y, Shen R et al (2017) Seasonal variation of particle-induced oxidative potential of airborne particulate matter in Beijing. Sci Total Environ 579:1152–1160. https://doi.org/10.1016/j.scitotenv.2016.11.094
doi: 10.1016/j.scitotenv.2016.11.094
Sun Y, Hu X, Wu J et al (2014a) Fractionation and health risks of atmospheric particle-bound As and heavy metals in summer and winter. Sci Total Environ 493:487–494. https://doi.org/10.1016/j.scitotenv.2014.06.017
doi: 10.1016/j.scitotenv.2014.06.017
Sun Z, Shao L, Mu Y, Hu Y (2014b) Oxidative capacities of size-segregated haze particles in a residential area of Beijing. J Environ Sci (China) 26:167–174. https://doi.org/10.1016/S1001-0742(13)60394-0
doi: 10.1016/S1001-0742(13)60394-0
Taylor S.R. (1964) Abundance of chemical elements in the continental crust : a new table. Geochim Cosmochim Acta 28:1273–1285
doi: 10.1016/0016-7037(64)90129-2
Thakur P, Mulholland GP (2011) Monitoring of gross alpha, gross beta and actinides activities in exhaust air released from the waste isolation pilot plant. Appl Radiat Isot 69:1307–1312. https://doi.org/10.1016/j.apradiso.2011.04.012
doi: 10.1016/j.apradiso.2011.04.012
The People’s Government of Beijing Municipality (2018) Statistical yearbook 2018 (in Chiness) (Accessed Auguest 19, 2019). In: http://www.ebeijing.gov.cn/BeijingInfo2019/Facts/t1573002.htm
Tian HZ, Wang Y, Xue ZG et al (2010) Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980-2007. Atmos Chem Phys 10:11905–11919. https://doi.org/10.5194/acp-10-11905-2010
doi: 10.5194/acp-10-11905-2010
Tzortzis M, Tsertos H (2004) Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus. J Environ Radioact 77:325–338. https://doi.org/10.1016/j.jenvrad.2004.03.014
doi: 10.1016/j.jenvrad.2004.03.014
U.S. EPA (1989) Risk assessment guidance for superfund volume I human health evaluation manual (Part A). Off Emerg Remedial Response 1:1–291
U.S. EPA (2001) Risk assessment guidance for superfund (RAGS) Volume III(Part A)
U.S. EPA (2004) Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (HHEM). Part E.
U.S. EPA (2007) Lead: human exposure and health risk assessments for selected case studies volume I. Human exposure and health risk assessments. I:
U.S. EPA (2009) Risk assessment guidance for superfund volume I: human health evaluation manual (Part F)
U.S. EPA (2011) Exposure Factors Handbook
U.S. EPA (2014) Recommended default exposure factors. https://rais.ornl.gov/documents/EFH_Table.pdf (Accessed Auguest 3, 2019)
U.S. EPA (2016) Initial list of hazardous air pollutants (Accessed Auguest 23, 2019). In: https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications#mods
U.S. EPA 2019 Basic Information about lead air pollution.https://www.epa.gov/lead-air-pollution/basic-information-about-lead-air-pollution#health (Accessed Auguest 3, 2019). In: https://www.epa.gov/lead-air-pollution/basic-information-about-lead-air-pollution#health
U.S. EPA (2019a) Health effects notebook for hazardous air pollutants(Accessed Auguest 12, 2019). In: https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants
U.S. EPA (2019b) Regional screening levels (RSLs)-generic tables (Accessed Auguest 24, 2019). In: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide
U.S.EPA (2010) Health effects notebook for hazardous air pollutants. In: https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants
UNEP, 2010. Final review of scientific information on lead. https://wedocs.unep.org/bitstream/handle/20.500.11822/27635/LeadRev.pdf?sequence=1&isAllowed=y . Accessed 1 Aug 2019.
UNEP (2019) A review of 20 years’ air pollution control in Beijing
UNSCEAR (2000) Sources and Effects of Ionizing Radiation.
Valavanidis A, Fiotakis K, Vlahogianni T et al (2006) Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the centre of Athens (Greece). Chemosphere 65:760–768. https://doi.org/10.1016/j.chemosphere.2006.03.052
doi: 10.1016/j.chemosphere.2006.03.052
Van Leeuwen FXR (2002) A European perspective on hazardous air pollutants. Toxicology 181–182:355–359. https://doi.org/10.1016/S0300-483X(02)00463-8
doi: 10.1016/S0300-483X(02)00463-8
Vik EA, Breedveld G, Farestveit T, et al (1999) Guidelines for the risk assessment of contaminated sites
Wei X, Gao B, Wang P et al (2015) Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol Environ Saf 112:186–192. https://doi.org/10.1016/j.ecoenv.2014.11.005
doi: 10.1016/j.ecoenv.2014.11.005
WHO (2000) Air quality guidelines for Europe.
WHO (2013a) Review of evidence on health aspects of air pollution – REVIHAAP Project
WHO (2013b) Health effects of particulate matter: policy implications for countries in eastern Europe, Caucasus and central Asia
WHO (2017) Evolution of WHO air quality guidelines: past, present and future
Yang H, Tao W, Liu Y et al (2019) The contribution of the Beijing, Tianjin and Hebei region’s iron and steel industry to local air pollution in winter. Environ Pollut 245:1095–1106. https://doi.org/10.1016/j.envpol.2018.11.088
doi: 10.1016/j.envpol.2018.11.088
Yao PH, Shyu GS, Chang YF et al (2015) Lead isotope characterization of petroleum fuels in Taipei, Taiwan. Int J Environ Res Public Health 12:4602–4616. https://doi.org/10.3390/ijerph120504602
doi: 10.3390/ijerph120504602
Yue W, Tong L, Liu X et al (2019) Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy. Redox Biol 22:101161. https://doi.org/10.1016/j.redox.2019.101161
doi: 10.1016/j.redox.2019.101161
Zanobetti A, Franklin M, Koutrakis P, Schwartz J (2009) Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ Heal A Glob Access Sci Source 8. https://doi.org/10.1186/1476-069X-8-58
Zhang L, Jin X, Johnson AC, Giesy JP (2016) Hazard posed by metals and As in PM2.5 in air of five megacities in the Beijing-Tianjin-Hebei region of China during APEC. Environ Sci Pollut Res Int 23:17603–17612. https://doi.org/10.1007/s11356-016-6863-2
doi: 10.1007/s11356-016-6863-2
Zheng X, Zhao W, Yan X et al (2015) Pollution characteristics and health risk assessment of airborne heavy metals collected from Beijing Bus Stations. Int J Environ Res Public Health 12:9658–9671. https://doi.org/10.3390/ijerph120809658
doi: 10.3390/ijerph120809658
Zong W, Xiao D, Ping LIU, et al (2009) Human exposure factors of chinese people in environmental health risk assessment. Environ Sci