Development of Empirical Bioavailability Models for Metals.
Bioavailability
Metal
Model
Multilinear regression
Water quality criteria
Journal
Environmental toxicology and chemistry
ISSN: 1552-8618
Titre abrégé: Environ Toxicol Chem
Pays: United States
ID NLM: 8308958
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
07
04
2019
revised:
01
05
2019
accepted:
08
08
2019
entrez:
28
12
2019
pubmed:
28
12
2019
medline:
26
8
2020
Statut:
ppublish
Résumé
Recently, there has been renewed interest in the development and use of empirical models to predict metal bioavailability and derive protective values for aquatic life. However, there is considerable variability in the conceptual and statistical approaches with which these models have been developed. In the present study, we review case studies of empirical bioavailability model development, evaluating and making recommendations on key issues, including species selection, identifying toxicity-modifying factors (TMFs) and the appropriate environmental range of these factors, use of existing toxicity data sets and experimental design for developing new data sets, statistical considerations in deriving species-specific and pooled bioavailability models, and normalization of species sensitivity distributions using these models. We recommend that TMFs be identified from a combination of available chemical speciation and toxicity data and statistical evaluations of their relationships to toxicity. Experimental designs for new toxicity data must be sufficiently robust to detect nonlinear responses to TMFs and should encompass a large fraction (e.g., 90%) of the TMF range. Model development should involve a rigorous use of both visual plotting and statistical techniques to evaluate data fit. When data allow, we recommend using a simple linear model structure and developing pooled models rather than retaining multiple taxa-specific models. We conclude that empirical bioavailability models often have similar predictive capabilities compared to mechanistic models and can provide a relatively simple, transparent tool for predicting the effects of TMFs on metal bioavailability to achieve desired environmental management goals. Environ Toxicol Chem 2019;39:85-100. © 2019 SETAC.
Identifiants
pubmed: 31880833
doi: 10.1002/etc.4570
pmc: PMC8011552
mid: NIHMS1648507
doi:
Substances chimiques
Metals
0
Water Pollutants, Chemical
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
85-100Subventions
Organisme : Metals Environmental Research Associations
Pays : International
Organisme : Newmont Mining
Pays : International
Organisme : Umicore
Pays : International
Organisme : Dow Chemical Company
Pays : International
Organisme : Windward Environmental
Pays : International
Organisme : Intramural EPA
ID : EPA999999
Pays : United States
Organisme : Rio Tinto
Pays : International
Organisme : U.S. Environmental Protection Agency
Pays : International
Informations de copyright
© 2019 SETAC.
Références
Environ Toxicol Chem. 2018 Jan;37(1):70-79
pubmed: 29080370
Environ Toxicol Chem. 2001 May;20(5):1037-45
pubmed: 11337866
Environ Toxicol Chem. 2001 Oct;20(10):2383-96
pubmed: 11596774
Environ Toxicol Chem. 2020 Jan;39(1):101-117
pubmed: 31880834
Aquat Toxicol. 2016 Nov;180:236-246
pubmed: 27750117
Sci Total Environ. 2009 Oct 1;407(20):5373-91
pubmed: 19631966
Aquat Toxicol. 2011 Jun;103(3-4):179-90
pubmed: 21470554
Environ Toxicol Chem. 2015 Apr;34(4):741-53
pubmed: 25418584
Environ Toxicol Chem. 2020 Jan;39(1):48-59
pubmed: 31880839
Environ Toxicol Chem. 2016 Oct;35(10):2397-2404
pubmed: 27253879
Environ Toxicol Chem. 2017 May;36(5):1128-1137
pubmed: 27935089
Environ Toxicol Chem. 2015 Jul;34(7):1597-608
pubmed: 25771778
Environ Sci Technol. 2004 Dec 1;38(23):6177-92
pubmed: 15597870
Environ Toxicol Chem. 2018 Jan;37(1):80-90
pubmed: 28833517
Arch Environ Contam Toxicol. 2008 May;54(4):690-6
pubmed: 18180860
Environ Toxicol Chem. 2002 Jun;21(6):1309-15
pubmed: 12069319
Environ Toxicol Chem. 2008 Oct;27(10):2097-107
pubmed: 19108042
Environ Toxicol Chem. 2018 Jan;37(1):49-60
pubmed: 28833434
Environ Toxicol Chem. 2005 May;24(5):1190-7
pubmed: 16110999
Environ Toxicol Chem. 2014 Aug;33(8):1865-73
pubmed: 24796294
Comp Biochem Physiol C Toxicol Pharmacol. 2012 Mar;155(2):423-31
pubmed: 22138336
Environ Toxicol Chem. 2020 Jan;39(1):118-130
pubmed: 31880836
Aquat Toxicol. 2017 Dec;193:217-227
pubmed: 29100104
Sci Total Environ. 2010 Oct 15;408(22):5414-22
pubmed: 20727572
Comp Biochem Physiol C Toxicol Pharmacol. 2011 Sep;154(3):137-45
pubmed: 21586337
Comp Biochem Physiol C Toxicol Pharmacol. 2002 Sep;133(1-2):3-35
pubmed: 12428632
Environ Sci Technol. 2014 Dec 16;48(24):14481-9
pubmed: 25420046
Environ Toxicol Chem. 2003 Oct;22(10):2454-65
pubmed: 14552011
Environ Sci Technol. 2017 May 2;51(9):5182-5192
pubmed: 28409924
Environ Toxicol Chem. 2011 Nov;30(11):2407-15
pubmed: 21842490
Comp Biochem Physiol C Toxicol Pharmacol. 2002 Sep;133(1-2):243-58
pubmed: 12356531
Sci Total Environ. 2010 Nov 15;408(24):6148-57
pubmed: 20920817
Environ Toxicol Chem. 2017 Sep;36(9):2503-2513
pubmed: 28294396
Sci Total Environ. 2001 Oct 20;278(1-3):11-22
pubmed: 11669259
Comp Biochem Physiol C Toxicol Pharmacol. 2002 Sep;133(1-2):271-85
pubmed: 12356533
Environ Toxicol Chem. 2020 Jan;39(1):60-84
pubmed: 31880840