Education and visual neuroscience: A mini-review.

educational neuroscience translational framework virtual reality (VR) vision visual rehabilitation

Journal

PsyCh journal
ISSN: 2046-0260
Titre abrégé: Psych J
Pays: Australia
ID NLM: 101598595

Informations de publication

Date de publication:
Aug 2020
Historique:
received: 25 04 2019
revised: 04 10 2019
accepted: 26 11 2019
pubmed: 31 12 2019
medline: 28 4 2021
entrez: 30 12 2019
Statut: ppublish

Résumé

Neuroscience, especially visual neuroscience, is a burgeoning field that has greatly shaped the format and efficacy of education. Moreover, findings from visual neuroscience are an ongoing source of great progress in pedagogy. In this mini-review, I review existing evidence and areas of active research to describe the fundamental questions and general applications for visual neuroscience as it applies to education. First, I categorize the research questions and future directions for the role of visual neuroscience in education. Second, I juxtapose opposing views on the roles of neuroscience in education and reveal the "neuromyths" propagated under the guise of educational neuroscience. Third, I summarize the policies and practices applied in different countries and for different age ranges. Fourth, I address and discuss the merits of visual neuroscience in art education and of visual perception theories (e.g., those concerned with perceptual organization with respect to space and time) in reading education. I consider how vision-deprived students could benefit from current knowledge of brain plasticity and visual rehabilitation methods involving compensation from other sensory systems. I also consider the potential educational value of instructional methods based on statistical learning in the visual domain. Finally, I outline the accepted translational framework for applying findings from educational neuroscience to pedagogical theory.

Identifiants

pubmed: 31884725
doi: 10.1002/pchj.335
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

524-532

Subventions

Organisme : National Natural Science Foundation of China
ID : 31861133012
Organisme : National Natural Science Foundation of China
ID : 61527804
Organisme : National Natural Science Foundation of China
ID : 61621136008

Informations de copyright

© 2019 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

Références

Altmann, G. T. (2002). Statistical learning in infants. Proceedings of the National Academy of Science of America, 99(24), 15250-15251. https://doi.org/10.1073/pnas.262659399
Amedi, A., Chebat, D. R., Levy-Tzedek, S., Buchs, G., & Maidenbaum, S. (2014). Returning sensory substitution to practical visual rehabilitation. Investigative Ophthalmology & Visual Science, 55(13), 4146.
Amedi, A., Hofstetter, S., Maidenbaum, S., & Heimler, B. (2017). Task selectivity as a comprehensive principle for brain organization. Trends in Cognitive Sciences, 21(5), 307-310. https://doi.org/10.1016/j.tics.2017.03.007
Ansari, D., & Coch, D. (2006). Bridges over troubled waters: Education and cognitive neuroscience. Trends in Cognitive Sciences, 10(4), 146-151. https://doi.org/10.1016/j.tics.2006.02.007
Aquilina, A., Korda, M., Bergelson, J. M., Humphries, M. J., Farndale, R. W., & Tuckwell, D. (2002). A novel gain-of-function mutation of the integrin alpha2 VWFA domain. European Journal of Biochemistry, 269(4), 1136-1144. https://doi.org/10.1046/j.0014-2956.2001.02740.x
Basu, A. C., Mondoux, M. A., Whitt, J. L., Isaacs, A. K., & Narita, T. (2017). An integrative approach to STEM concepts in an introductory neuroscience course: Gains in interdisciplinary awareness. Journal of Undergraduate Neuroscience Education, 16(1), A102-A111.
Becker-Bense, S., Buchholz, H. G., zu Eulenburg, P., Best, C., Bartenstein, P., Schreckenberger, M., & Dieterich, M. (2012). Ventral and dorsal streams processing visual motion perception (FDG-PET study). BMC Neuroscience, 13, 81. https://doi.org/10.1186/1471-2202-13-81
Bertels, J., Boursain, E., Destrebecqz, A., & Gaillard, V. (2014). Visual statistical learning in children and young adults: How implicit? Frontiers in Psychology, 5, 1541. https://doi.org/10.3389/fpsyg.2014.01541
Boukrina, O., Hanson, S. J., & Hanson, C. (2014). Modeling activation and effective connectivity of VWFA in same script bilinguals. Human Brain Mapping, 35(6), 2543-2560. https://doi.org/10.1002/hbm.22348
Bowers, J. S. (2016a). The practical and principled problems with educational neuroscience. Psychological Review, 123(5), 600-612. https://doi.org/10.1037/rev0000025
Bowers, J. S. (2016b). Psychology, not educational neuroscience, is the way forward for improving educational outcomes for all children: Reply to Gabrieli (2016) and Howard-Jones et al. (2016). Psychological Review, 123(5), 628-635. https://doi.org/10.1037/rev0000043
Braddick, O. J., OʼBrien, J. M., Wattam-Bell, J., Atkinson, J., & Turner, R. (2000). Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain. Current Biology, 10(12), 731-734. https://doi.org/10.1016/s0960-9822(00)00540-6
British Association for Early Childhood Education (n.d.). Extended history of Early Childhood Education. Retrived from https://www.early-education.org.uk/extended-history-early-education
Caclin, A., Paradis, A. L., Lamirel, C., Thirion, B., Artiges, E., Poline, J. B., & Lorenceau, J. (2012). Perceptual alternations between unbound moving contours and bound shape motion engage a ventral/dorsal interplay. Journal of Vision, 12(7), 11. https://doi.org/10.1167/12.7.11
Cerruti, C. (2013). Building a functional multiple intelligences theory to advance educational neuroscience. Frontiers in Psychology, 4, 950. https://doi.org/10.3389/fpsyg.2013.00950
Chen, L., & Vroomen, J. (2013). Intersensory binding across space and time: A tutorial review. Attention, Perception, and Psychophysics, 75(5), 790-811. https://doi.org/10.3758/s13414-013-0475-4
Chen, L., Zhou, X., Müller, H. J., & Shi, Z. (2018). What you see depends on what you hear: Temporal averaging and crossmodal integration. Journal of Experimental Psychology: General, 147(12), 1851-1864. https://doi.org/10.1037/xge0000487
Cooper, E. A., & Mackey, A. P. (2016). Sensory and cognitive plasticity: Implications for academic interventions. Current Opinion in Behavioral Sciences, 10, 21-27. https://doi.org/10.1016/j.cobeha.2016.04.008
Coyne, L., Takemoto, J. K., Parmentier, B. L., Merritt, T., & Sharpton, R. A. (2018). Exploring virtual reality as a platform for distance team-based learning. Currents in Pharmacy Teaching and Learning, 10(10), 1384-1390. https://doi.org/10.1016/j.cptl.2018.07.005
Donner, T. H., Sagi, D., Bonneh, Y. S., & Heeger, D. J. (2008). Opposite neural signatures of motion-induced blindness in human dorsal and ventral visual cortex. Journal of Neuroscience, 28(41), 10298-10310. https://doi.org/10.1523/JNEUROSCI.2371-08.2008
Dubinsky, J. M. (2010). Neuroscience education for prekindergarten-12 teachers. Journal of Neuroscience, 30(24), 8057-8060. https://doi.org/10.1523/JNEUROSCI.2322-10.2010
Dunbar, G. L. (2015). Career transitions for faculty members committed to undergraduate neuroscience education. Journal of Undergraduate Neuroscience Education, 13(3), A155-A159.
Farivar, R., Blanke, O., & Chaudhuri, A. (2009). Dorsal-ventral integration in the recognition of motion-defined unfamiliar faces. Journal of Neuroscience, 29(16), 5336-5342. https://doi.org/10.1523/JNEUROSCI.4978-08.2009
Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychological Science, 12(6), 499-504. https://doi.org/10.1111/1467-9280.00392
Fiser, J., & Aslin, R. N. (2002a). Statistical learning of higher-order temporal structure from visual shape sequences. Journal of Experimental Psychology: Learning, Memory and Cognition, 28(3), 458-467. https://doi.org/10.1037//0278-7393.28.3.458
Fiser, J., & Aslin, R. N. (2002b). Statistical learning of new visual feature combinations by infants. Proceedings of the National Academy of Science of America, 99(24), 15822-15826. https://doi.org/10.1073/pnas.232472899
Gabrieli, J. D. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325(5938), 280-283. https://doi.org/10.1126/science.1171999
Glezer, L. S., Kim, J., Rule, J., Jiang, X., & Riesenhuber, M. (2015). Adding words to the brainʼs visual dictionary: Novel word learning selectively sharpens orthographic representations in the VWFA. Journal of Neuroscience, 35(12), 4965-4972. https://doi.org/10.1523/JNEUROSCI.4031-14.2015
Goldreich, D., & Kanics, I. M. (2003). Tactile acuity is enhanced in blindness. Journal of Neuroscience, 23(8), 3439-3445. https://doi.org/10.1523/JNEUROSCI.23-08-03439.2003
Goswami, U. (2006). Neuroscience and education: From research to practice? Nature Review Neuroscience, 7(5), 406-411. https://doi.org/10.1038/nrn1907
Habets, B., Bruns, P., & Roder, B. (2017). Experience with crossmodal statistics reduces the sensitivity for audio-visual temporal asynchrony. Scientific Reports, 7(1), 1486. https://doi.org/10.1038/s41598-017-01252-y
Handa, T., & Mikami, A. (2018). Neuronal correlates of motion-defined shape perception in primate dorsal and ventral streams. European Journal of Neuroscience, 48(10), 3171-3185. https://doi.org/10.1111/ejn.14121
Handa, T., Unno, S., & Mikami, A. (2017). Temporal property of single-cell activity in response to motion-defined shapes in monkey dorsal and ventral cortical areas. NeuroReport, 28(13), 793-799. https://doi.org/10.1097/WNR.0000000000000826
Hertz, U., & Amedi, A. (2015). Flexibility and stability in sensory processing revealed using visual-to-auditory sensory substitution. Cerebral Cortex, 25(8), 2049-2064. https://doi.org/10.1093/cercor/bhu010
Hoffman, H. M. (2000). Teaching and learning with virtual reality. Studies in Health Technologies and Informatics, 79, 285-291.
Howard-Jones, P. A. (2014). Neuroscience and education: Myths and messages. Nature Review Neuroscience, 15(12), 817-824. https://doi.org/10.1038/nrn3817
Howard-Jones, P. A., Varma, S., Ansari, D., Butterworth, B., De Smedt, B., Goswami, U., … Thomas, M. S. (2016). The principles and practices of educational neuroscience: Comment on Bowers (2016). Psychological Review, 123(5), 620-627. https://doi.org/10.1037/rev0000036
Hsu, A. T., Hedman, T., Chang, J. H., Vo, C., Ho, L., Ho, S., & Chang, G. L. (2002). Changes in abduction and rotation range of motion in response to simulated dorsal and ventral translational mobilization of the glenohumeral joint. Physical Therapy, 82(6), 544-556.
Imam, B., & Jarus, T. (2014). Virtual reality rehabilitation from social cognitive and motor learning theoretical perspectives in stroke population. Rehabilitation Research and Practice, 2014, 594540. https://doi.org/10.1155/2014/594540
Jainta, S., Blythe, H. I., & Liversedge, S. P. (2014). Binocular advantages in reading. Current Biology, 24(5), 526-530. https://doi.org/10.1016/j.cub.2014.01.014
Jainta, S., Nikolova, M., & Liversedge, S. P. (2017). Does text contrast mediate binocular advantages in reading? Journal of Experimental Psychology: Human Perception and Performance, 43(1), 55-68. https://doi.org/10.1037/xhp0000293
Jun, J., & Chong, S. C. (2016). Visual statistical learning of temporal structures at different hierarchical levels. Attention, Perception and Psychophysics, 78(5), 1308-1323. https://doi.org/10.3758/s13414-016-1104-9
Kassuba, T., Klinge, C., Holig, C., Roder, B., & Siebner, H. R. (2014). Short-term plasticity of visuo-haptic object recognition. Frontiers in Psychology, 5, 274. https://doi.org/10.3389/fpsyg.2014.00274
Keizer, A. W., Colzato, L. S., & Hommel, B. (2008). Integrating faces, houses, motion, and action: Spontaneous binding across ventral and dorsal processing streams. Acta Psychologica, 127(1), 177-185. https://doi.org/10.1016/j.actpsy.2007.04.003
Kienitz, R., Schmiedt, J. T., Shapcott, K. A., Kouroupaki, K., Saunders, R. C., & Schmid, M. C. (2018). Theta Rhythmic Neuronal Activity and Reaction Times Arising from Cortical Receptive Field Interactions during Distributed Attention. Current Biology, 28(15), 2377-2387. https://doi.org/10.1016/j.cub.2018.05.086
Kontsevich, L. L., & Tyler, C. W. (2004). What makes Mona Lisasmile? Vision Research, 44(13), 1493-1498. https://doi.org/10.1016/j.visres.2003.11.027
Kramer, P., & Yantis, S. (1997). Perceptual grouping in space and time: Evidence from the Ternus display. Perception and Psychophysics, 59(1), 87-99. https://doi.org/10.3758/bf03206851
Lafer-Sousa, R., & Conway, B. R. (2009). Vision and art: An interdisciplinary approach to neuroscience education. Journal of Undergraduate Neuroscience Education, 8(1), A10-A17.
Landau, A. N. (2018). Neuroscience: A mechanism for rhythmic sampling in vision. Current Biology, 28(15), R830-R832. https://doi.org/10.1016/j.cub.2018.05.081
Leonards, U., Singer, W., & Fahle, M. (1996). The influence of temporal phase differences on texture segmentation. Vision Research, 36(17), 2689-2697. https://doi.org/10.1016/0042-6989(96)86829-5
Lewald, J., & Getzmann, S. (2013). Ventral and dorsal visual pathways support auditory motion processing in the blind: Evidence from electrical neuroimaging. European Journal of Neuroscience, 38(8), 3201-3209. https://doi.org/10.1111/ejn.12306
Lichtensteiger, J., Loenneker, T., Bucher, K., Martin, E., & Klaver, P. (2008). Role of dorsal and ventral stream development in biological motion perception. Neuroreport, 19(18), 1763-1767. https://doi.org/10.1097/WNR.0b013e328318ede3
Lopez-Escribano, C. (2007). Contributions of neuroscience to the diagnosis and educational treatment of developmental dyslexia. Revue Neurologique, 44(3), 173-180. https://doi.org/10.33588/rn.4403.2005666
Luursema, J. M., Vorstenbosch, M., & Kooloos, J. (2017). Stereopsis, visuospatial ability, and virtual reality in anatomy learning. Anatomy Research International, 2017, 1493135. https://doi.org/10.1155/2017/1493135
Macdonald, K., Germine, L., Anderson, A., Christodoulou, J., & McGrath, L. M. (2017). Dispelling the myth: Training in education or neuroscience decreases but does not eliminate beliefs in neuromyths. Frontiers in Psychology, 8, 1314. https://doi.org/10.3389/fpsyg.2017.01314
MacKisack, M., Aldworth, S., Macpherson, F., Onians, J., Winlove, C., & Zeman, A. (2016). On picturing a candle: The prehistory of imagery science. Frontiers in Psychology, 7, 515. https://doi.org/10.3389/fpsyg.2016.00515
Maidenbaum, S., Abboud, S., & Amedi, A. (2014). Sensory substitution: Closing the gap between basic research and widespread practical visual rehabilitation. Neuroscience and Biobehavioral Reviews, 41, 3-15. https://doi.org/10.1016/j.neubiorev.2013.11.007
Maidenbaum, S., Abboud, S., Buchs, G., & Amedi, A. (2015). Blind in a virtual world: Using sensory substitution for generically increasing the accessibility of graphical virtual environments. In 2015 IEEE Virtual Reality Conference (VR), pp. 233-234.
Maidenbaum, S., Arbel, R., Buchs, G., Shapira, S., & Amedi, A. (2014). Vision through other senses: practical use of Sensory Substitution devices as assistive technology for visual rehabilitation. In 22nd Mediterranean Conference on Control and Automation, pp. 182-187.
Maidenbaum, S., Buchs, G., Abboud, S., Lavi-Rotbain, O., & Amedi, A. (2016). Perception of graphical virtual environments by blind users via sensory substitution. PLoS One, 11(2), e0147501. https://doi.org/10.1371/journal.pone.0147501
Maidenbaum, S., Levy-Tzedek, S., Chebat, D. R., & Amedi, A. (2014). Blind in a virtual world -color, spatial perception and navigation for the blind using auditory sensory substitution in virtual environments. Investigative Ophthalmology & Visual Science, 55(13), 2156.
Marsh, R., Hao, X., Xu, D., Wang, Z., Duan, Y., Liu, J., … Peterson, B. S. (2010). A virtual reality-based FMRI study of reward-based spatial learning. Neuropsychologia, 48(10), 2912-2921. https://doi.org/10.1016/j.neuropsychologia.2010.05.033
Marshall, L. H., Rivera, J. A., & Magoun, H. W. (1975). The institutional base for education and research in neuroscience. Experimental Neurology, 49(1), 14-23. https://doi.org/10.1016/0014-4886(75)90274-5
Mason, L. (2009). Bridging neuroscience and education: A two-way path is possible. Cortex, 45(4), 548-549. https://doi.org/10.1016/j.cortex.2008.06.003
Mercier, M. R., Schwartz, S., Spinelli, L., Michel, C. M., & Blanke, O. (2017). Dorsal and ventral stream contributions to form-from-motion perception in a patient with form-from motion deficit: A case report. Brain Structure and Function, 222(2), 1093-1107. https://doi.org/10.1007/s00429-016-1245-6
Nava, E., & Roder, B. (2011). Adaptation and maladaptation: Insights from brain plasticity. In Enhancing performance for action and perception: multisensory integration, neuroplasticity and neuroprosthetics, Pt I (Vol. 191, pp. 177-194). Amsterdam, The Netherlands: Elsevier Science. https://doi.org/10.1016/B978-0-444-53752-2.00005-9
Nikolova, M., Jainta, S., Blythe, H. I., & Liversedge, S. P. (2017). Using a dichoptic moving window presentation technique to investigate binocular advantages during reading. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 265-280. https://doi.org/10.1037/xhp0000296
Nikolova, M., Jainta, S., Blythe, H. I., & Liversedge, S. P. (2018). Binocular advantages for parafoveal processing in reading. Vision Research, 145, 56-63. https://doi.org/10.1016/j.visres.2018.02.005
Onians, J. (2018). Art, the visual imagination and neuroscience: The Chauvet Cave, Mona Lisaʼs smile and Michelangeloʼs terribilita. Cortex, 105, 182-188. https://doi.org/10.1016/j.cortex.2017.10.009
Op de Beeck, H. P., Pillet, I., & Ritchie, J. B. (2019). Factors determining where category-selective areas emerge in visual cortex. Trends in Cognitive Sciences, 23(9), 784-797. https://doi.org/10.1016/j.tics.2019.06.006
Proulx, M. J., Ptito, M., & Amedi, A. (2014). Multisensory integration, sensory substitution and visual rehabilitation. Neuroscience and Biobehavioral Reviews, 41, 1-2. https://doi.org/10.1016/j.neubiorev.2014.03.004
Proverbio, A. M., Zotto, M. D., & Zani, A. (2006). Greek language processing in naive and skilled readers: Functional properties of the VWFA investigated with ERPs. Cognitive Neuropsychology, 23(3), 355-375. https://doi.org/10.1080/02643290442000536
Rao, H. M., Khanna, R., Zielinski, D. J., Lu, Y., Clements, J. M., Potter, N. D., … Appelbaum, L. G. (2018). Sensorimotor learning during a marksmanship task in immersive virtual reality. Frontiers in Psychology, 9, 58. https://doi.org/10.3389/fpsyg.2018.00058
Rapado-Castro, M., Pazos, A., Fananas, L., Bernardo, M., Ayuso-Mateos, J. L., Leza, J. C., … Arango, C. (2015). Building up careers in translational neuroscience and mental health research: Education and training in the Centre for Biomedical Research in Mental Health. Revista de Psiquiatría y Salud Mental, 8(2), 65-74. https://doi.org/10.1016/j.rpsm.2014.09.003
Repetto, C. (2014). The use of virtual reality for language investigation and learning. Frontiers in Psychology, 5, 1280. https://doi.org/10.3389/fpsyg.2014.01280
Resnick, D. K. (2000). Neuroscience education of undergraduate medical students. Part I: Role of neurosurgeons as educators. Journal of Neurosurgery, 92(4), 637-641. https://doi.org/10.3171/jns.2000.92.4.0637
Resnick, D. K., & Ramirez, L. F. (2000). Neuroscience education of undergraduate medical students. Part II: Outcome improvement. Journal of Neurosurgery, 92(4), 642-645. https://doi.org/10.3171/jns.2000.92.4.0642
Ricciardi, E., Bonino, D., Sani, L., Vecchi, T., Guazzelli, M., Haxby, J. V., … Pietrini, P. (2009). Do we really need vision? How blind people "see" the actions of others. Journal of Neuroscience, 29(31), 9719-9724. https://doi.org/10.1523/Jneurosci.0274-09.2009
Roder, B., & Wallace, M. (2010). Development and plasticity of multisensory functions. Restorative Neurology and Neuroscience, 28(2), 141-142. https://doi.org/10.3233/Rnn-2010-0536
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926-1928. https://doi.org/10.1126/science.274.5294.1926
Schrag, F. (2011). Education and neuroscience: What kind of marriage? Cortex, 47(9), 1066-1067. https://doi.org/10.1016/j.cortex.2011.05.023
Scott-Samuel, N. E., & Hess, R. F. (2001). What does the Ternus display tell us about motion processing in human vision? Perception, 30(10), 1179-1188. https://doi.org/10.1068/p3247
Shaywitz, B. A., Shaywitz, S. E., Blachman, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P., … Gore, J. C. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55(9), 926-933. https://doi.org/10.1016/j.biopsych.2003.12.019
Shonkoff, J. P., & Levitt, P. (2010). Neuroscience and the future of early childhood policy: Moving from why to what and how. Neuron, 67(5), 689-691. https://doi.org/10.1016/j.neuron.2010.08.032
Sigalov, N., Maidenbaum, S., & Amedi, A. (2016). Reading in the dark: Neural correlates and cross-modal plasticity for learning to read entire words without visual experience. Neuropsychologia, 83, 149-160. https://doi.org/10.1016/j.neuropsychologia.2015.11.009
Smith, S. J., Farra, S., Ulrich, D. L., Hodgson, E., Nicely, S., & Matcham, W. (2016). Learning and retention using virtual reality in a decontamination simulation. Nursing Education Perspectives, 37(4), 210-214. https://doi.org/10.1097/01.NEP.0000000000000035
Tal, Z., Geva, R., & Amedi, A. (2017). Positive and negative somatotopic bold responses in contralateral versus ipsilateral penfield homunculus. Cerebral Cortex, 27(2), 962-980. https://doi.org/10.1093/cercor/bhx024
The Royal Society. (2011). Brain Waves 2: Neuroscience: implications for education and lifelong learning. Retrived from https://royalsociety.org/topics-policy/projects/brain-waves/education-lifelong-learning/
Thunell, E., van der Zwaag, W., Ogmen, H., Plomp, G., & Herzog, M. H. (2016). Retinotopic encoding of the Ternus-Pikler display reflected in the early visual areas. Journal of Vision, 16(3), 26. https://doi.org/10.1167/16.3.26
Tyler, C. W., & Likova, L. T. (2012). The role of the visual arts in the enhancing the learning process. Frontiers in Human Neuroscience, 6, 8. https://doi.org/10.3389/fnhum.2012.00008
Vogel, A. C., Petersen, S. E., & Schlaggar, B. L. (2014). The VWFA: Itʼs not just for words anymore. Frontiers in Human Neuroscience, 8, 88. https://doi.org/10.3389/fnhum.2014.00088
Wallace, J. M., & Scott-Samuel, N. E. (2007). Spatial versus temporal grouping in a modified Ternus display. Vision Research, 47(17), 2353-2366. https://doi.org/10.1016/j.visres.2007.05.016
Wang, X., Caramazza, A., Peelen, M. V., Han, Z., & Bi, Y. (2015). Reading without speech sounds: VWFA and its connectivity in the congenitally deaf. Cerebral Cortex, 25(9), 2416-2426. https://doi.org/10.1093/cercor/bhu044
Watson, M. R., Voloh, B., Thomas, C., Hasan, A., & Womelsdorf, T. (2019). USE: An integrative suite for temporally-precise psychophysical experiments in virtual environments for human, nonhuman, and artificially intelligent agents. Journal of Neuroscience Methods, 326, 108374. https://doi.org/10.1016/j.jneumeth.2019.108374
Wolf, C. C., Ball, A., Ocklenburg, S., Otto, T., Heed, T., Roder, B., & Gunturkun, O. (2011). Visuotactile interactions in the congenitally acallosal brain: Evidence for early cerebral plasticity. Neuropsychologia, 49(14), 3908-3916. https://doi.org/10.1016/j.neuropsychologia.2011.10.008
Wong, C. W., Olafsson, V., Plank, M., Snider, J., Halgren, E., Poizner, H., & Liu, T. T. (2014). Resting-state fMRI activity predicts unsupervised learning and memory in an immersive virtual reality environment. PLoS One, 9(10), e109622. https://doi.org/10.1371/journal.pone.0109622
Xu, G., Jiang, Y., Ma, L., Yang, Z., & Weng, X. (2012). Similar spatial patterns of neural coding of category selectivity in FFA and VWFA under different attention conditions. Neuropsychologia, 50(5), 862-868. https://doi.org/10.1016/j.neuropsychologia.2012.01.026
Yang, N., He, Y., Zhang, Z., Dong, H., Zhang, L., Zhu, X., … Zuo, X. (2017). Chinese color nest project: Growing up in China (in Chinese). Chinese Science Bulletin, 62, 3008-3022.
Yoon, S. Y., Choi, Y. J., & Oh, H. (2015). User attributes in processing 3D VR-enabled showroom: Gender, visual cognitive styles, and the sense of presence. International Journal of Human-Computer Studies, 82, 1-10. https://doi.org/10.1016/j.ijhcs.2015.04.002
Zeman, A., MacKisack, M., & Onians, J. (2018). The Eyeʼs mind - visual imagination, neuroscience and the humanities. Cortex, 105, 1-3. https://doi.org/10.1016/j.cortex.2018.06.012
Zhou, C., Han, M., Liang, Q., Hu, Y. F., & Kuai, S. G. (2019). A social interaction field model accurately identifies static and dynamic social groupings. Nature Human Behavior, 3(8), 847-855. https://doi.org/10.1038/s41562-019-0618-2

Auteurs

Lihan Chen (L)

School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH