SorCS2 facilitates release of endostatin from astrocytes and controls post-stroke angiogenesis.


Journal

Glia
ISSN: 1098-1136
Titre abrégé: Glia
Pays: United States
ID NLM: 8806785

Informations de publication

Date de publication:
06 2020
Historique:
received: 06 08 2019
revised: 17 12 2019
accepted: 19 12 2019
pubmed: 4 1 2020
medline: 20 8 2021
entrez: 4 1 2020
Statut: ppublish

Résumé

SorCS2 is an intracellular sorting receptor of the VPS10P domain receptor gene family recently implicated in oxidative stress response. Here, we interrogated the relevance of stress-related activities of SorCS2 in the brain by exploring its role in ischemic stroke in mouse models and in patients. Although primarily seen in neurons in the healthy brain, expression of SorCS2 was massively induced in astrocytes surrounding the ischemic core in mice following stroke. Post-stroke induction was likely a result of increased levels of transforming growth factor β1 in damaged brain tissue, inducing Sorcs2 gene transcription in astrocytes but not neurons. Induced astrocytic expression of SorCS2 was also seen in stroke patients, substantiating the clinical relevance of this observation. In astrocytes in vitro and in the mouse brain in vivo, SorCS2 specifically controlled release of endostatin, a factor linked to post-stroke angiogenesis. The ability of astrocytes to release endostatin acutely after stroke was lost in mice deficient for SorCS2, resulting in a blunted endostatin response which coincided with impaired vascularization of the ischemic brain. Our findings identified activated astrocytes as a source for endostatin in modulation of post-stroke angiogenesis, and the importance of the sorting receptor SorCS2 in this brain stress response.

Identifiants

pubmed: 31898841
doi: 10.1002/glia.23778
doi:

Substances chimiques

Endostatins 0
Nerve Tissue Proteins 0
Receptors, Cell Surface 0
SorCS2 protein, mouse 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1304-1316

Informations de copyright

© 2020 The Authors. Glia published by Wiley Periodicals, Inc.

Références

Aronica, E., Gorter, J. A., Rozemuller, A. J., Yankaya, B., & Troost, D. (2005). Interleukin-1 beta down-regulates the expression of metabotropic glutamate receptor 5 in cultured human astrocytes. Journal of Neuroimmunology, 160(1-2), 188-194. https://doi.org/10.1016/j.jneuroim.2004.11.015
Canuel, M., Korkidakis, A., Konnyu, K., & Morales, C. R. (2008). Sortilin mediates the lysosomal targeting of cathepsins D and H. Biochemical and Biophysical Research Communications, 373(2), 292-297. https://doi.org/10.1016/j.bbrc.2008.06.021
Chen, J.-Y., Yu, Y., Yuan, Y., Zhang, Y.-J., Fan, X.-P., Yuan, S.-Y., … Yao, S.-L. (2017). Enriched housing promotes post-stroke functional recovery through astrocytic HMGB1-IL-6-mediated angiogenesis. Cell Death Discovery, 3, 17054. https://doi.org/10.1038/cddiscovery.2017.54
Chen, N., Gao, R.-F., Yuan, F.-L., & Zhao, M.-D. (2016). Recombinant human endostatin suppresses mouse osteoclast formation by inhibiting the NF-κB and MAPKs signaling pathways. Frontiers in Pharmacology, 7, 145. https://doi.org/10.3389/fphar.2016.00145
Chen, Z.-Y., Ieraci, A., Teng, H., Dall, H., Meng, C.-X., Herrera, D. G., … Lee, F. S. (2005). Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(26), 6156-6166. https://doi.org/10.1523/JNEUROSCI.1017-05.2005
Dirnagl, U., & Members of the MCAO-SOP Group. (2012). Standard operating procedures (SOP) in experimental stroke research: SOP for middle cerebral artery occlusion in the mouse. Nature Precedings. https://doi.org/10.1038/npre.2012.3492.3
Felbor, U., Dreier, L., Bryant, R. A., Ploegh, H. L., Olsen, B. R., & Mothes, W. (2000). Secreted cathepsin L generates endostatin from collagen XVIII. The EMBO Journal, 19(6), 1187-1194. https://doi.org/10.1093/emboj/19.6.1187
Ferreras, M., Felbor, U., Lenhard, T., Olsen, B. R., & Delaissé, J.-M. (2000). Generation and degradation of human endostatin proteins by various proteinases. FEBS Letters, 486(3), 247-251. https://doi.org/10.1016/S0014-5793(00)02249-3
Gertz, K., Priller, J., Kronenberg, G., Fink, K. B., Winter, B., Schröck, H., … Endres, M. (2006). Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circulation Research, 99(10), 1132-1140. https://doi.org/10.1161/01.RES.0000250175.14861.77
Glerup, S., Olsen, D., Vaegter, C. B., Gustafsen, C., Sjoegaard, S. S., Hermey, G., … Nykjaer, A. (2014). SorCS2 regulates dopaminergic wiring and is processed into an apoptotic two-chain receptor in peripheral glia. Neuron, 82(5), 1074-1087. https://doi.org/10.1016/j.neuron.2014.04.022
Hayashi, T., Noshita, N., Sugawara, T., & Chan, P. H. (2003). Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. Journal of Cerebral Blood Flow & Metabolism, 23(2), 166-180. https://doi.org/10.1097/01.WCB.0000041283.53351.CB
Herda, S., Raczkowski, F., Mittrücker, H.-W., Willimsky, G., Gerlach, K., Kühl, A. A., … Rehm, A. (2012). The sorting receptor Sortilin exhibits a dual function in exocytic trafficking of interferon-γ and granzyme A in T cells. Immunity, 37(5), 854-866. https://doi.org/10.1016/j.immuni.2012.07.012
Hou, Q., Ling, L., Wang, F., Xing, S., Pei, Z., & Zeng, J. (2010). Endostatin expression in neurons during the early stage of cerebral ischemia is associated with neuronal apoptotic cell death in adult hypertensive rat model of stroke. Brain Research, 1311, 182-188. https://doi.org/10.1016/j.brainres.2009.11.033
Kaplan, R. C., Petersen, A.-K., Chen, M.-H., Teumer, A., Glazer, N. L., Döring, A., … Wallaschofski, H. (2011). A genome-wide association study identifies novel loci associated with circulating IGF-I and IGFBP-3. Human Molecular Genetics, 20(6), 1241-1251. https://doi.org/10.1093/hmg/ddq560
Krupinski, J., Kaluza, J., Kumar, P., Kumar, S., & Wang, J. M. (1994). Role of angiogenesis in patients with cerebral ischemic stroke. Stroke, 25(9), 1794-1798. https://doi.org/10.1161/01.str.25.9.1794
Kuo, C. J., LaMontagne, K. R., Garcia-Cardeña, G., Ackley, B. D., Kalman, D., Park, S., … Javaherian, K. (2001). Oligomerization-dependent regulation of motility and morphogenesis by the collagen Xviii Nc1/endostatin domain. The Journal of Cell Biology, 152(6), 1233-1246. https://doi.org/10.1083/jcb.152.6.1233
Ma, D. H.-K., Yao, J.-Y., Kuo, M.-T., See, L.-C., Lin, K.-Y., Chen, S.-C., … Lin, K.-K. (2007). Generation of endostatin by matrix metalloproteinase and cathepsin from human limbocorneal epithelial cells cultivated on amniotic membrane. Investigative Ophthalmology & Visual Science, 48(2), 644-651. https://doi.org/10.1167/iovs.06-0884
Malik, A. R., Szydlowska, K., Nizinska, K., Asaro, A., van Vliet, E. A., Popp, O., … Willnow, T. E. (2019). SorCS2 controls functional expression of amino acid transporter EAAT3 and protects neurons from oxidative stress and epilepsy-induced pathology. Cell Reports, 26(10), 2792-2804.e6. https://doi.org/10.1016/j.celrep.2019.02.027
Meng, H., Song, Y., Zhu, J., Liu, Q., Lu, P., Ye, N., … Wu, H. (2016). LRG1 promotes angiogenesis through upregulating the TGF-β1 pathway in ischemic rat brain. Molecular Medicine Reports, 14(6), 5535-5543. https://doi.org/10.3892/mmr.2016.5925
Navarro-Sobrino, M., Rosell, A., Hernández-Guillamon, M., Penalba, A., Boada, C., Domingues-Montanari, S., … Montaner, J. (2011). A large screening of angiogenesis biomarkers and their association with neurological outcome after ischemic stroke. Atherosclerosis, 216(1), 205-211. https://doi.org/10.1016/j.atherosclerosis.2011.01.030
O'Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., … Folkman, J. (1997). Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell, 88(2), 277-285. https://doi.org/10.1016/S0092-8674(00)81848-6
Pardali, E., Goumans, M.-J., & ten Dijke, P. (2010). Signaling by members of the TGF-β family in vascular morphogenesis and disease. Trends in Cell Biology, 20(9), 556-567. https://doi.org/10.1016/j.tcb.2010.06.006
Parnis, J., Montana, V., Delgado-Martinez, I., Matyash, V., Parpura, V., Kettenmann, H., … Nolte, C. (2013). Mitochondrial exchanger NCLX plays a major role in the intracellular Ca2+ signaling, gliotransmission, and proliferation of astrocytes. Journal of Neuroscience, 33(17), 7206-7219. https://doi.org/10.1523/JNEUROSCI.5721-12.2013
Pekny, M., Pekna, M., Messing, A., Steinhäuser, C., Lee, J.-M., Parpura, V., … Verkhratsky, A. (2016). Astrocytes: A central element in neurological diseases. Acta Neuropathologica, 131(3), 323-345. https://doi.org/10.1007/s00401-015-1513-1
Ramakers, C., Ruijter, J. M., Deprez, R. H. L., & Moorman, A. F. M. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neuroscience Letters, 339(1), 62-66. https://doi.org/10.1016/s0304-3940(02)01423-4
Reitz, C. (2015). The role of the retromer complex in aging-related neurodegeneration: A molecular and genomic review. Molecular Genetics and Genomics: MGG, 290(2), 413-427. https://doi.org/10.1007/s00438-014-0939-9
Ruijter, J. M., Ramakers, C., Hoogaars, W. M. H., Karlen, Y., Bakker, O., van den Hoff, M. J. B., & Moorman, A. F. M. (2009). Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research, 37(6), e45. https://doi.org/10.1093/nar/gkp045
Rust, R., Grönnert, L., Gantner, C., Enzler, A., Mulders, G., Weber, R. Z., … Schwab, M. E. (2019). Nogo-A targeted therapy promotes vascular repair and functional recovery following stroke. Proceedings of the National Academy of Sciences of the United States of America, 116(28), 14270-14279. https://doi.org/10.1073/pnas.1905309116
Sasaki, T., Fukai, N., Mann, K., Göhring, W., Olsen, B. R., & Timpl, R. (1998). Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin. The EMBO Journal, 17(15), 4249-4256. https://doi.org/10.1093/emboj/17.15.4249
Sudhakar, A., Sugimoto, H., Yang, C., Lively, J., Zeisberg, M., & Kalluri, R. (2003). Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4766-4771. https://doi.org/10.1073/pnas.0730882100
Tian, H.-L., Chen, H., Cui, Y.-H., Xu, T., & Zhou, L.-F. (2007). Increased protein and mRNA expression of endostatin in the ischemic brain tissue of rabbits after middle cerebral artery occlusion. Neuroscience Bulletin, 23(1), 35-40. https://doi.org/10.1007/s12264-007-0005-2
Vaegter, C. B., Jansen, P., Fjorback, A. W., Glerup, S., Skeldal, S., Kjolby, M., … Nykjaer, A. (2011). Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nature Neuroscience, 14(1), 54-61. https://doi.org/10.1038/nn.2689
Willnow, T. E., Petersen, C. M., & Nykjaer, A. (2008). VPS10P-domain receptors-Regulators of neuronal viability and function. Nature Reviews. Neuroscience, 9(12), 899-909. https://doi.org/10.1038/nrn2516
Yan, J., Greer, J. M., & McCombe, P. A. (2012). Prolonged elevation of cytokine levels after human acute ischaemic stroke with evidence of individual variability. Journal of Neuroimmunology, 246(1), 78-84. https://doi.org/10.1016/j.jneuroim.2012.02.013
Zhang, C., Zhu, Y., Wang, S., Zachory Wei, Z., Jiang, M. Q., Zhang, Y., … Wei, L. (2018). Temporal gene expression profiles after focal cerebral ischemia in mice. Aging and Disease, 9(2), 249-261. https://doi.org/10.14336/AD.2017.0424
Zhu, H., Gui, Q., Hui, X., Wang, X., Jiang, J., Ding, L., … Chen, H. (2017). TGF-β1/Smad3 signaling pathway suppresses cell apoptosis in cerebral ischemic stroke rats. Medical Science Monitor, 23, 366-376. https://doi.org/10.12659/MSM.899195

Auteurs

Anna R Malik (AR)

Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.
Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.

Janet Lips (J)

Department of Experimental Neurology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.
Berlin Institute of Health, QUEST Centre for Transforming Biomedical Research, Berlin, Germany.

Malgorzata Gorniak-Walas (M)

Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.

Diede W M Broekaart (DWM)

Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands.

Antonino Asaro (A)

Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.

Melanie T C Kuffner (MTC)

Department of Experimental Neurology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.

Christian J Hoffmann (CJ)

Department of Experimental Neurology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.

Majed Kikhia (M)

Department of Experimental Neurology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany.

Monika Dopatka (M)

Department of Experimental Neurology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.

Philipp Boehm-Sturm (P)

Department of Experimental Neurology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Charité Core Facility 7T Experimental MRIs, Berlin, Germany.

Susanne Mueller (S)

Department of Experimental Neurology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Charité Core Facility 7T Experimental MRIs, Berlin, Germany.

Ulrich Dirnagl (U)

Department of Experimental Neurology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.
Berlin Institute of Health, QUEST Centre for Transforming Biomedical Research, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany.
German Centre for Neurodegenerative Diseases, Berlin, Germany.

Eleonora Aronica (E)

Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands.
Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.

Christoph Harms (C)

Department of Experimental Neurology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Center for Stroke Research Berlin, Berlin, Germany.
Berlin Institute of Health, QUEST Centre for Transforming Biomedical Research, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany.

Thomas E Willnow (TE)

Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH