Therapeutic options for mucinous ovarian carcinoma.
Genomic
Molecular targeted therapy
Ovarian cancer
Precision oncology
Sequencing
Therapy
Journal
Gynecologic oncology
ISSN: 1095-6859
Titre abrégé: Gynecol Oncol
Pays: United States
ID NLM: 0365304
Informations de publication
Date de publication:
03 2020
03 2020
Historique:
received:
09
10
2019
revised:
18
11
2019
accepted:
15
12
2019
pubmed:
7
1
2020
medline:
3
7
2020
entrez:
7
1
2020
Statut:
ppublish
Résumé
Mucinous ovarian carcinoma (MOC) is an uncommon ovarian cancer histotype that responds poorly to conventional chemotherapy regimens. Although long overall survival outcomes can occur with early detection and optimal surgical resection, recurrent and advanced disease are associated with extremely poor survival. There are no current guidelines specifically for the systemic management of recurrent MOC. We analyzed data from a large cohort of women with MOC to evaluate the potential for clinical utility from a range of systemic agents. We analyzed gene copy number (n = 191) and DNA sequencing data (n = 184) from primary MOC to evaluate signatures of mismatch repair deficiency and homologous recombination deficiency, and other genetic events. Immunohistochemistry data were collated for ER, CK7, CK20, CDX2, HER2, PAX8 and p16 (n = 117-166). Molecular aberrations noted in MOC that suggest a match with current targeted therapies include amplification of ERBB2 (26.7%) and BRAF mutation (9%). Observed genetic events that suggest potential efficacy for agents currently in clinical trials include: KRAS/NRAS mutations (66%), TP53 missense mutation (49%), RNF43 mutation (11%), ARID1A mutation (10%), and PIK3CA/PTEN mutation (9%). Therapies exploiting homologous recombination deficiency (HRD) may not be effective in MOC, as only 1/191 had a high HRD score. Mismatch repair deficiency was similarly rare (1/184). Although genetically diverse, MOC has several potential therapeutic targets. Importantly, the lack of response to platinum-based therapy observed clinically corresponds to the lack of a genomic signature associated with HRD, and MOC are thus also unlikely to respond to PARP inhibition.
Identifiants
pubmed: 31902686
pii: S0090-8258(19)31836-0
doi: 10.1016/j.ygyno.2019.12.015
pmc: PMC7056511
mid: NIHMS1548042
pii:
doi:
Substances chimiques
ERBB2 protein, human
EC 2.7.10.1
ERBB3 protein, human
EC 2.7.10.1
Receptor, ErbB-2
EC 2.7.10.1
Receptor, ErbB-3
EC 2.7.10.1
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
552-560Subventions
Organisme : NCI NIH HHS
ID : P30 CA015083
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA136393
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA122443
Pays : United States
Informations de copyright
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest The authors declare no conflicts of interest. ADF, NT and DDLB have received research grant funding from AstraZeneca, unrelated to the contents on this manuscript. DDLB also reports funding from Roche-Genentech and BeiGene, also unrelated. CG reports funding from AstraZeneca, Roche, Clovis, Tesaro, Foundation One, Nucana, Aprea, Novartis, Chugai, and MSD, all outside the submitted work. CLS reports non-financial support and/or other support from Clovis Oncology, Roche, Eisai Australia, Beigene, Sierra Oncology, and AstraZeneca, all outside the submitted work.
Références
Am J Epidemiol. 2010 Jan 1;171(1):45-53
pubmed: 19910378
Oncol Rep. 2007 Nov;18(5):1051-9
pubmed: 17914554
Nucleic Acids Res. 2016 Jan 4;44(D1):D862-8
pubmed: 26582918
Trends Cancer. 2017 Jan;3(1):39-55
pubmed: 28303264
Oncotarget. 2017 Aug 14;8(48):84019-84027
pubmed: 29137401
JCO Precis Oncol. 2018 Nov;2:1-14
pubmed: 35135122
Nucleic Acids Res. 2016 Sep 19;44(16):e131
pubmed: 27270079
BMC Cancer. 2009 Dec 10;9:433
pubmed: 20003286
J Clin Oncol. 2012 Jul 20;30(21):2654-63
pubmed: 22711857
Nucleic Acids Res. 2019 Jan 8;47(D1):D941-D947
pubmed: 30371878
Lancet Oncol. 2013 Aug;14(9):853-62
pubmed: 23845225
Biomark Res. 2015 May 01;3:9
pubmed: 26015868
Am J Surg Pathol. 2017 May;41(5):685-695
pubmed: 28125452
Curr Oncol. 2010 Nov;17(6):82-5
pubmed: 21151415
Genome Biol. 2015 Feb 27;16:49
pubmed: 25887352
Int J Gynecol Pathol. 2010 Mar;29(2):99-107
pubmed: 20173494
Int J Gynecol Cancer. 2010 Aug;20(6):945-52
pubmed: 20683400
Mod Pathol. 2004 Jun;17(6):696-700
pubmed: 15017435
Nat Med. 2019 May;25(5):744-750
pubmed: 31011206
Clin Cancer Res. 2016 Aug 1;22(15):3764-73
pubmed: 26957554
Clin Cancer Res. 2008 Nov 1;14(21):6847-54
pubmed: 18980979
Mol Cancer Ther. 2015 Oct;14(10):2187-97
pubmed: 26208524
J Clin Oncol. 2015 Dec 1;33(34):4032-8
pubmed: 26460303
Am J Surg Pathol. 2014 Sep;38(9):1173-81
pubmed: 25025451
Histopathology. 2016 Aug;69(2):288-97
pubmed: 26799366
Arch Pathol Lab Med. 2014 Feb;138(2):241-56
pubmed: 24099077
Eur J Cancer. 2012 Jul;48(10):1476-83
pubmed: 22047635
Onco Targets Ther. 2016 Jan 07;9:203-10
pubmed: 26793003
Front Oncol. 2012 Aug 31;2:109
pubmed: 22970424
Clin Cancer Res. 2007 Jun 15;13(12):3617-22
pubmed: 17575226
J Mol Diagn. 2017 Jan;19(1):84-91
pubmed: 27863258
BMC Genomics. 2014 Aug 28;15:732
pubmed: 25167919
Gynecol Oncol. 2019 Jun;153(3):541-548
pubmed: 31005287
Mutat Res. 2004 Dec 21;568(2):275-82
pubmed: 15542114
Eur J Cancer. 2018 Mar;92:1-10
pubmed: 29413684
Nature. 2018 Feb 8;554(7691):189-194
pubmed: 29420467
J Clin Oncol. 2017 Apr 1;35(10):1103-1111
pubmed: 28221866
Int J Gynecol Pathol. 2019 Nov;38(6):568-575
pubmed: 30480647
Nat Med. 2019 Mar;25(3):389-402
pubmed: 30842677
Nature. 2013 Aug 22;500(7463):415-21
pubmed: 23945592
Gynecol Oncol. 2009 Jun;113(3):331-4
pubmed: 19275957
Nat Commun. 2019 Sep 2;10(1):3935
pubmed: 31477716
Sci Signal. 2013 Apr 02;6(269):pl1
pubmed: 23550210
J Clin Oncol. 2012 Oct 10;30(29):3633-9
pubmed: 22965953
Pan Afr Med J. 2017 Aug 08;27:259
pubmed: 29187928
Lancet Oncol. 2014 Feb;15(2):e58-68
pubmed: 24480556