Ascleposide, a natural cardenolide, induces anticancer signaling in human castration-resistant prostatic cancer through Na
Acetylation
/ drug effects
Antineoplastic Agents, Phytogenic
/ pharmacology
Cardenolides
/ pharmacology
Cell Cycle Checkpoints
/ drug effects
Cell Line, Tumor
Cell Proliferation
/ drug effects
Down-Regulation
Humans
Male
Malvaceae
/ chemistry
PC-3 Cells
Plant Extracts
/ pharmacology
Prostatic Neoplasms, Castration-Resistant
/ drug therapy
Signal Transduction
/ drug effects
Sodium-Potassium-Exchanging ATPase
/ metabolism
Tubulin
/ metabolism
Na+/K+-ATPase α1-subunit
ascleposide
endocytosis
p38 MAPK
tubulin acetylation
Journal
The Prostate
ISSN: 1097-0045
Titre abrégé: Prostate
Pays: United States
ID NLM: 8101368
Informations de publication
Date de publication:
03 2020
03 2020
Historique:
received:
30
07
2019
accepted:
11
12
2019
pubmed:
7
1
2020
medline:
18
6
2020
entrez:
7
1
2020
Statut:
ppublish
Résumé
Cardiac glycosides, which inhibit Na Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay, carboxyfluorescein succinimidyl ester staining assay and clonogenic examination. Flow cytometric analysis was used to detect the distribution of cell cycle phase, mitochondrial membrane potential, intracellular Na Ascleposide induced an increase of intracellular Na Ascleposide displays antiproliferative and apoptotic activities dependent on the inhibition of Na
Sections du résumé
BACKGROUND
Cardiac glycosides, which inhibit Na
METHODS
Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay, carboxyfluorescein succinimidyl ester staining assay and clonogenic examination. Flow cytometric analysis was used to detect the distribution of cell cycle phase, mitochondrial membrane potential, intracellular Na
RESULTS
Ascleposide induced an increase of intracellular Na
CONCLUSION
Ascleposide displays antiproliferative and apoptotic activities dependent on the inhibition of Na
Substances chimiques
Antineoplastic Agents, Phytogenic
0
Cardenolides
0
Plant Extracts
0
Tubulin
0
Sodium-Potassium-Exchanging ATPase
EC 7.2.2.13
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
305-318Informations de copyright
© 2020 Wiley Periodicals, Inc.
Références
Geering K. Functional roles of Na,K-ATPase subunits. Curr Opin Nephrol Hypertens. 2008;17(5):526-532.
Tokhtaeva E, Clifford RJ, Kaplan JH, Sachs G, Vagin O. Subunit isoform selectivity in assembly of Na,K-ATPase α-β heterodimers. J Biol Chem. 2012;287(31):26115-26125.
Sweadner KJ. Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta. 1989;988(2):185-220.
Woo AL, James PF, Lingrel JB. Sperm motility is dependent on a unique isoform of the Na,K-ATPase. J Biol Chem. 2000;275(27):20693-20699.
Blanco G. Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Nephrol. 2005;25(5):292-303.
Dobretsov M, Stimers JR. Neuronal function and alpha3 isoform of the Na/K-ATPase. Front Biosci. 2005;10:2373-2396.
Arystarkhova E, Sweadner KJ. Tissue-specific expression of the Na,K-ATPase beta3 subunit. The presence of beta3 in lung and liver addresses the problem of the missing subunit. J Biol Chem. 1997;272(36):22405-22408.
Li Z, Zhang Z, Xie JX, et al. Na/K-ATPase mimetic pNaKtide peptide inhibits the growth of human cancer cells. J Biol Chem. 2011;286(37):32394-32403.
Baker Bechmann M, Rotoli D, Morales M, et al. Na,K-ATPase isozymes in colorectal cancer and liver metastases. Front Physiol. 2016;7:9.
Wang Q, Li SB, Zhao YY, et al. Identification of a sodium pump Na+/K+ ATPase α1-targeted peptide for PET imaging of breast cancer. J Control Release. 2018;281:178-188.
Prassas I, Diamandis EP. Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov. 2008;7(11):926-935.
Bai Y, Morgan EE, Giovannucci DR, et al. Different roles of the cardiac Na+/Ca2+-exchanger in ouabain-induced inotropy, cell signaling, and hypertrophy. Am J Physiol Heart Circ Physiol. 2013;304(3):H427-H435.
Babula P, Masarik M, Adam V, Provaznik I, Kizek R. From Na+/K+-ATPase and cardiac glycosides to cytotoxicity and cancer treatment. Anticancer Agents Med Chem. 2013;13(7):1069-1087.
Diederich M, Muller F, Cerella C. Cardiac glycosides: from molecular targets to immunogenic cell death. Biochem Pharmacol. 2017;125:1-11.
He Y, Khan M, Yang J, Yao M, Yu S, Gao H. Proscillaridin A induces apoptosis, inhibits STAT3 activation and augments doxorubicin toxicity in prostate cancer cells. Int J Med Sci. 2018;15(8):832-839.
Stenkvist B, Bengtsson E, Dahlqvist B, et al. Cardiac glycosides and breast cancer, revisited. N Engl J Med. 1982;306(8):484.
Ishida J, Konishi M, Ebner N, Springer J. Repurposing of approved cardiovascular drugs. J Transl Med. 2016;14:269.
Stenkvist B. Is digitalis a therapy for breast carcinoma? Oncol Rep. 1999;6(3):493-496.
Platz EA, Yegnasubramanian S, Liu JO, et al. A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment. Cancer Discov. 2011;1(1):68-77.
Zhang RR, Tian HY, Tan YF, et al. Structures, chemotaxonomic significance, cytotoxic and Na(+),K(+)-ATPase inhibitory activities of new cardenolides from Asclepias curassavica. Org Biomol Chem. 2014;12(44):8919-8929.
Chang HS, Lin CH, Hsiao PY, et al. Bioactive composition of Reevesia formosana root and stem with cytotoxic activity potential. RSC Adv. 2017;7(43):27040-27047.
Mateyak MK, Obaya AJ, Sedivy JM. c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Mol Cell Biol. 1999;19(7):4672-4683.
Vélez-Cruz R, Johnson DG. The retinoblastoma (RB) tumor suppressor: pushing back against genome instability on multiple fronts. Int J Mol Sci. 2017;18(8):pii: E1776.
Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011;21(1):92-101.
Liu J, Tian J, Haas M, et al. Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. J Biol Chem. 2000;275(36):27838-27844.
Wu J, Akkuratov EE, Bai Y, Gaskill CM, Askari A, Liu L. Cell signaling associated with Na(+)/K(+)-ATPase: activation of phosphatidylinositide 3-kinase IA/Akt by ouabain is independent of Src. Biochemistry. 2013;52(50):9059-9067.
Taschner M, Vetter M, Lorentzen E. Atomic resolution structure of human α-tubulin acetyltransferase bound to acetyl-CoA. Proc Natl Acad Sci U S A. 2012;109(48):19649-19654.
Santander VS, Bisig CG, Purro SA, Casale CH, Arce CA, Barra HS. Tubulin must be acetylated in order to form a complex with membrane Na(+),K (+)-ATPase and to inhibit its enzyme activity. Mol Cell Biochem. 2006;291(1-2):167-174.
Liu J, Shapiro JI. Regulation of sodium pump endocytosis by cardiotonic steroids: molecular mechanisms and physiological implications. Pathophysiology. 2007;14(3-4):171-181.
Khundmiri SJ, Bertorello AM, Delamere NA, Lederer ED. Clathrin-mediated endocytosis of Na+,K+-ATPase in response to parathyroid hormone requires ERK-dependent phosphorylation of Ser-11 within the alpha1-subunit. J Biol Chem. 2004;279(17):17418-17427.
Wang YB, Leroy V, Maunsbach AB, et al. Sodium transport is modulated by p38 kinase-dependent cross-talk between ENaC and Na,K-ATPase in collecting duct principal cells. J Am Soc Nephrol. 2014;25(2):250-259.
Felippe Gonçalves-de-Albuquerque C, Ribeiro Silva A, Ignácio da Silva C, Caire Castro-Faria-Neto H, Burth P. Na/K pump and beyond: Na/K-ATPase as a modulator of apoptosis and autophagy. Molecules. 2017;22(4):pii: E578.
Zeino M, Brenk R, Gruber L, et al. Cytotoxicity of cardiotonic steroids in sensitive and multidrug-resistant leukemia cells and the link with Na(+)/K(+)-ATPase. J Steroid Biochem Mol Biol. 2015;150:97-111.
Rosato RR, Almenara JA, Yu C, Grant S. Evidence of a functional role for p21WAF1/CIP1 down-regulation in synergistic antileukemic interactions between the histone deacetylase inhibitor sodium butyrate and flavopiridol. Mol Pharmacol. 2004;65(3):571-581.
Suzuki A, Kawano H, Hayashida M, Hayasaki Y, Tsutomi Y, Akahane K. Procaspase 3/p21 complex formation to resist Fas-mediated cell death is initiated as a result of the phosphorylation of p21 by protein kinase A. Cell Death Differ. 2000;7(8):721-728.
Eymin B, Haugg M, Droin N, Sordet O, Dimanche-Boitrel MT, Solary E. p27Kip1 induces drug resistance by preventing apoptosis upstream of cytochrome c release and procaspase-3 activation in leukemic cells. Oncogene. 1999;18(7):1411-1418.
Suh DH, Kim MK, Kim HS, Chung HH, Song YS. Mitochondrial permeability transition pore as a selective target for anti-cancer therapy. Front Oncol. 2013;3:41.
Cheng EH, Wei MC, Weiler S, et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell. 2001;8(3):705-711.
Hockings C, Alsop AE, Fennell SC, et al. Mcl-1 and Bcl-xL sequestration of Bak confers differential resistance to BH3-only proteins. Cell Death Differ. 2018;25(4):719-732.
Pearson AS, Spitz FR, Swisher SG, et al. Up-regulation of the proapoptotic mediators Bax and Bak after adenovirus-mediated p53 gene transfer in lung cancer cells. Clin Cancer Res. 2000;6(3):887-890.
Chen KC, Liu WH, Kao PH, Chang LS. Calcium-stimulated mitogen-activated protein kinase activation elicits Bcl-xL downregulation and Bak upregulation in notexin-treated human neuroblastoma SK-N-SH cells. J Cell Physiol. 2010;222(1):177-186.
Casale CH, Previtali G, Serafino JJ, Arce CA, Barra HS. Regulation of acetylated tubulin/Na+,K+-ATPase interaction by L-glutamate in non-neural cells: involvement of microtubules. Biochim Biophys Acta. 2005;1721(1-3):185-192.
Santander VS, Campetelli AN, Monesterolo NE, et al. Tubulin-Na+, K +-ATPase interaction: involvement in enzymatic regulation and cellular function. J Cell Physiol. 2019;234(6):7752-7763.
Zampar GG, Chesta ME, Carbajal A, et al. Acetylated tubulin associates with the fifth cytoplasmic domain of Na(+)/K(+)-ATPase: possible anchorage site of microtubules to the plasma membrane. Biochem J. 2009;422(1):129-137.
Dada LA, Trejo Bittar HE, Welch LC, et al. High CO2 leads to Na,K-ATPase endocytosis via c-Jun amino-terminal kinase-induced LMO7b phosphorylation. Mol Cell Biol. 2015;35(23):3962-3973.