Non-gradient and genotype-dependent patterns of RSV gene expression.
Adenosine Monophosphate
/ analogs & derivatives
Alanine
/ analogs & derivatives
Animals
Cell Line
Female
Genotype
Half-Life
Humans
Male
RNA Stability
RNA, Messenger
/ genetics
RNA, Viral
/ genetics
Respiratory Syncytial Virus Infections
/ pathology
Respiratory Syncytial Virus, Human
/ genetics
Sigmodontinae
Transcription, Genetic
/ drug effects
Virus Replication
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2020
2020
Historique:
received:
11
09
2019
accepted:
20
12
2019
entrez:
11
1
2020
pubmed:
11
1
2020
medline:
10
4
2020
Statut:
epublish
Résumé
Respiratory syncytial virus (RSV) is a nonsegmented negative-strand RNA virus (NSV) and a leading cause of severe lower respiratory tract illness in infants and the elderly. Transcription of the ten RSV genes proceeds sequentially from the 3' promoter and requires conserved gene start (GS) and gene end (GE) signals. Previous studies using the prototypical GA1 genotype Long and A2 strains have indicated a gradient of gene transcription extending across the genome, with the highest level of mRNA coming from the most promoter-proximal gene, the first nonstructural (NS1) gene, and mRNA levels from subsequent genes dropping until reaching a minimum at the most promoter-distal gene, the polymerase (L) gene. However, recent reports show non-gradient levels of mRNA, with higher than expected levels from the attachment (G) gene. It is unknown to what extent different transcript stabilities might shape measured mRNA levels. It is also unclear whether patterns of RSV gene expression vary, or show strain- or genotype-dependence. To address this, mRNA abundances from five RSV genes were measured by quantitative real-time PCR (qPCR) in three cell lines and in cotton rats infected with RSV isolates belonging to four genotypes (GA1, ON, GB1, BA). Relative mRNA levels reached steady-state between four and 24 hours post-infection. Steady-state patterns were non-gradient and genotype-specific, where mRNA levels from the G gene exceeded those from the more promoter-proximal nucleocapsid (N) gene across isolates. Transcript stabilities could not account for the non-gradient patterns observed, indicating that relative mRNA levels more strongly reflect transcription than decay. Our results indicate that gene expression from a small but diverse set of RSV genotypes is non-gradient and genotype-dependent. We propose novel models of RSV transcription that can account for non-gradient transcription.
Identifiants
pubmed: 31923213
doi: 10.1371/journal.pone.0227558
pii: PONE-D-19-24823
pmc: PMC6953876
doi:
Substances chimiques
RNA, Messenger
0
RNA, Viral
0
remdesivir
3QKI37EEHE
Adenosine Monophosphate
415SHH325A
Alanine
OF5P57N2ZX
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0227558Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Virology. 2002 Sep 1;300(2):304-15
pubmed: 12350361
Curr Top Microbiol Immunol. 2004;283:61-119
pubmed: 15298168
Proc Natl Acad Sci U S A. 1987 Aug;84(16):5625-9
pubmed: 2441388
Virology. 2004 Jan 20;318(2):463-73
pubmed: 15015496
J Virol. 1992 Nov;66(11):6813-8
pubmed: 1404620
Proc Natl Acad Sci U S A. 1983 Jun;80(11):3208-12
pubmed: 6190173
PLoS Pathog. 2019 Oct 17;15(10):e1007984
pubmed: 31622448
J Virol. 2005 Jul;79(14):9157-67
pubmed: 15994810
Nat Commun. 2016 Dec 21;7:13916
pubmed: 28000669
J Virol. 2005 Oct;79(20):13105-15
pubmed: 16189012
J Virol. 1984 Feb;49(2):572-8
pubmed: 6546401
BMC Biotechnol. 2009 Aug 28;9:75
pubmed: 19715565
Virology. 2008 May 10;374(2):361-70
pubmed: 18241907
Vaccines (Basel). 2017 Jul 03;5(3):
pubmed: 28671606
BMC Genomics. 2016 Sep 05;17:708
pubmed: 27595578
J Infect Dis. 2016 Aug 15;214(4):649-55
pubmed: 27190183
J Pediatr. 2003 Nov;143(5 Suppl):S118-26
pubmed: 14615710
PLoS One. 2017 Sep 6;12(9):e0184318
pubmed: 28877226
Virus Res. 2011 Dec;162(1-2):80-99
pubmed: 21963675
Sci Rep. 2016 May 23;6:26311
pubmed: 27212633
Virology. 2001 Sep 30;288(2):295-307
pubmed: 11601901
Sci Rep. 2017 Mar 06;7:43395
pubmed: 28262699
J Microbiol Methods. 2009 Mar;76(3):316-9
pubmed: 19135484
J Virol. 1996 Oct;70(10):6892-901
pubmed: 8794332
J Virol. 2016 Apr 29;90(10):4876-4888
pubmed: 26656699
J Virol. 2007 Sep;81(17):9443-50
pubmed: 17596309
Pediatr Infect Dis J. 2014 Jan;33(1):11-8
pubmed: 23934206
BMC Genomics. 2016 Oct 13;17(1):801
pubmed: 27737640
Cell. 1981 Feb;23(2):477-84
pubmed: 6258804
Virus Evol. 2017 Mar 11;3(1):vex006
pubmed: 28458916
Arch Pediatr Adolesc Med. 2012 Aug;166(8):700-6
pubmed: 22473882
PLoS One. 2017 Mar 7;12(3):e0172953
pubmed: 28267794
J Gen Virol. 1998 Sep;79 ( Pt 9):2221-9
pubmed: 9747732
Proc Natl Acad Sci U S A. 1976 Feb;73(2):442-6
pubmed: 174107
Pediatrics. 2010 Feb;125(2):342-9
pubmed: 20100768
Proc Natl Acad Sci U S A. 1976 May;73(5):1504-8
pubmed: 179088
Open Microbiol J. 2011;5:144-54
pubmed: 22262987
PLoS One. 2014 Mar 13;9(3):e90786
pubmed: 24625544
Virology. 2015 May;479-480:545-54
pubmed: 25683441
J Virol. 1984 Nov;52(2):364-9
pubmed: 6492254
Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9663-7
pubmed: 1946383
Nature. 2016 Mar 17;531(7594):381-5
pubmed: 26934220
J Virol. 2015 Dec 09;90(4):1898-909
pubmed: 26656691
J Infect Dis. 2015 Feb 15;211(4):582-9
pubmed: 25156562
Lancet. 2010 May 1;375(9725):1545-55
pubmed: 20399493
Pediatrics. 2006 Oct;118(4):1774-93
pubmed: 17015575
J Virol. 1997 Jul;71(7):4944-53
pubmed: 9188557
J Virol. 1999 Jan;73(1):170-6
pubmed: 9847319
J Virol. 1980 Sep;35(3):682-93
pubmed: 7420539
Virology. 2004 Sep 15;327(1):121-33
pubmed: 15327903
J Virol. 2015 Apr;89(7):3444-54
pubmed: 25609811
J Virol. 1999 Jan;73(1):388-97
pubmed: 9847343
PLoS One. 2015 Mar 20;10(3):e0120098
pubmed: 25793751
Pediatr Pulmonol. 2017 Apr;52(4):556-569
pubmed: 27740723
J Gen Virol. 1993 Mar;74 ( Pt 3):485-90
pubmed: 8445369