Carbon Monoxide Rescues the Developmental Lethality of Experimental Rat Models of Rhabdomyolysis-Induced Acute Kidney Injury.


Journal

The Journal of pharmacology and experimental therapeutics
ISSN: 1521-0103
Titre abrégé: J Pharmacol Exp Ther
Pays: United States
ID NLM: 0376362

Informations de publication

Date de publication:
03 2020
Historique:
received: 05 09 2019
accepted: 26 12 2019
pubmed: 12 1 2020
medline: 7 7 2020
entrez: 12 1 2020
Statut: ppublish

Résumé

Many victims, after being extricated from a collapsed building as the result of a disaster, suffer from disaster nephrology, a term that is referred to as the crush syndrome (CS). Recommended treatments, which include dialysis or the continuous administration of massive amounts of fluid are not usually easy in cases of such mass natural disasters. In the present study, we examined the therapeutic performance of a biomimetic carbon monoxide (CO) delivery system, CO-enriched red blood cells (CO-RBCs), on experimental animal models of an acute kidney injury (AKI) induced by traumatic and nontraumatic rhabdomyolysis, including CS and rhabdomyolysis with massive hemorrhage shock. A single CO-RBC treatment was found to effectively suppress the pathogenesis of AKI with the mortality in these model rats being improved. In addition, in further studies using glycerol-induced rhabdomyolysis model rats, the pathogenesis of which is similar to that for the CS, AKI and mortality were also reduced as the result of a CO-RBC treatment. Furthermore, CO-RBCs were found to have renoprotective effects via the suppression of subsequent heme protein-associated renal oxidative injury; the oxidation of myoglobin in the kidneys, the generation of reactive oxygen species by free heme produced from degraded-cytochrome P450 and hemoglobin-associated renal injury. Because CO-RBCs can be prepared and used at both hospitals and at a disaster site, these findings suggest that CO-RBCs have the potential for use as a novel cell therapy against both nontraumatic and traumatic rhabdomyolysis including CS-induced AKI. SIGNIFICANCE STATEMENT: After mass natural and man-made disasters, people who are trapped in collapsed buildings are in danger of acute kidney injury (AKI), including crush syndrome (CS)-related AKI. This paper reports that carbon monoxide-enriched red blood cells (CO-RBCs), which can be prepared at both hospitals and disaster sites, dramatically suppressed the pathogenesis of CS-related AKI, thus improving mortality via suppressing heme protein-associated renal injuries. CO-RBCs have the potential for serving as a practical therapeutic agent against disaster nephrology associated with the CS.

Identifiants

pubmed: 31924689
pii: jpet.119.262485
doi: 10.1124/jpet.119.262485
doi:

Substances chimiques

Carbon Monoxide 7U1EE4V452

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

355-365

Informations de copyright

Copyright © 2020 by The American Society for Pharmacology and Experimental Therapeutics.

Auteurs

Kazuaki Taguchi (K)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.) taguchi-kz@pha.keio.ac.jp.

Shigeru Ogaki (S)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Taisei Nagasaki (T)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Hiroki Yanagisawa (H)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Kento Nishida (K)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Hitoshi Maeda (H)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Yuki Enoki (Y)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Kazuaki Matsumoto (K)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Hidehisa Sekijima (H)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Kazuya Ooi (K)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Yu Ishima (Y)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Hiroshi Watanabe (H)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Masafumi Fukagawa (M)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Masaki Otagiri (M)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.).

Toru Maruyama (T)

Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, Tokyo, Japan (K.T., Y.E., K.M.); Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (S.O., T.N., H.Y., K.N., H.M., H.W., T.M.) and Center for Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences (H.W., T.M.), Kumamoto University, Kumamoto, Japan; Laboratory of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Mie, Japan (H.S., K.O.); Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan (Y.I.); and Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan (M.F.) tomaru@gpo.kumamoto-u.ac.jp.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH