Endpoint stiffness magnitude increases linearly with a stronger power grasp.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
15 01 2020
Historique:
received: 27 09 2019
accepted: 26 12 2019
entrez: 17 1 2020
pubmed: 17 1 2020
medline: 17 1 2020
Statut: epublish

Résumé

Humans can increase the endpoint stiffness of their arm to reduce self-generated movement variability and to reject unpredictable perturbations from the environment, like during handheld drilling, thereby increasing movement precision. Existing methods to estimate changes in the endpoint stiffness use robotic interfaces to apply position or force perturbations to measure the arm's dynamic response. We propose an alternative method of measuring changes in the power grasp force to estimate adaptations in the magnitude of the arm's endpoint stiffness. To validate our method, we examined how the strength of the power grasp, when holding onto a robotic manipulandum, affected the arm's endpoint stiffness in three different locations of the workspace. The endpoint stiffness magnitude increased linearly with the grasp force, and this linear relationship did not depend on the arm's posture or position in the workspace. The endpoint stiffness may have increased as a combination of greater grasp stiffness and greater arm stiffness, since larger co-contraction was observed in the elbow and shoulder with a stronger grasp. Changes in the grasp force could serve as a metric in assessing how humans adapt their endpoint stiffness magnitude.

Identifiants

pubmed: 31941998
doi: 10.1038/s41598-019-57267-0
pii: 10.1038/s41598-019-57267-0
pmc: PMC6962455
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

379

Références

Hogan, N. Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 29, 681–690 (1984).
doi: 10.1109/TAC.1984.1103644
Selen, L. P. J., Franklin, D. W. & Wolpert, D. M. Impedance Control Reduces Instability That Arises from Motor Noise. J. Neurosci. 29, 12606–12616 (2009).
doi: 10.1523/JNEUROSCI.2826-09.2009
Wong, J., Wilson, E. T., Malfait, N. & Gribble, P. L. Limb Stiffness Is Modulated With Spatial Accuracy Requirements During Movement in the Absence of Destabilizing Forces. J. Neurophysiol. 101, 1542–1549 (2009).
doi: 10.1152/jn.91188.2008
Burdet, E., Osu, R., Franklin, D. W., Milner, T. E. & Kawato, M. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414, 446–449 (2001).
doi: 10.1038/35106566
Franklin, D. W. et al. Endpoint Stiffness of the Arm Is Directionally Tuned to Instability in the Environment. J. Neurosci. 27, 7705–7716 (2007).
doi: 10.1523/JNEUROSCI.0968-07.2007
Flash, T. & Mussa-Ivaldi, F. Human arm stiffness characteristics during the maintenance of posture. Exp. Brain Res. 82, 315–326 (1990).
doi: 10.1007/BF00231251
Tsuji, T., Morasso, P. G., Goto, K. & Ito, K. Human hand impedance characteristics during maintained posture. Biol. Cybern. 72, 475–485 (1995).
doi: 10.1007/BF00199890
Perreault, E. J., Kirsch, R. F. & Acosta, A. M. Multiple-input, multiple-output system identification for characterization of limb stiffness dynamics. Biol. Cybern. 80, 327–337 (1999).
doi: 10.1007/s004220050529
Burdet, E. et al. A method for measuring endpoint stiffness during multi-joint arm movements. J. Biomech. 33, 1705–1709 (2000).
doi: 10.1016/S0021-9290(00)00142-1
Piovesan, D., Pierobon, A., DiZio, P. & Lackner, J. R. Experimental measure of arm stiffness during single reaching movements with a time-frequency analysis. J. Neurophysiol. 110, 2484–2496 (2013).
doi: 10.1152/jn.01013.2012
Takagi, A., Kambara, H. & Koike, Y. Increase in Grasp Force Reflects a Desire to Improve Movement Precision. eNeuro. 6, ENEURO.0095–19.2019 (2019).
doi: 10.1523/ENEURO.0095-19.2019
Franklin, D. W. et al. CNS Learns Stable, Accurate, and Efficient Movements Using a Simple Algorithm. J. Neurosci. 28, 11165–11173 (2008).
doi: 10.1523/JNEUROSCI.3099-08.2008
Mussa-Ivaldi, F. A., Hogan, N. & Bizzi, E. Neural, mechanical, and geometric factors subserving arm posture in humans. J. Neurosci. 5, 2732–2743 (1985).
doi: 10.1523/JNEUROSCI.05-10-02732.1985
Darainy, M., Malfait, N., Gribble, P. L., Towhidkhah, F. & Ostry, D. J. Learning to Control Arm Stiffness Under Static Conditions. J. Neurophysiol. 92, 3344–3350 (2004).
doi: 10.1152/jn.00596.2004
Sarlegna, F. et al. Target and hand position information in the online control of goal-directed arm movements. Exp. Brain Res. 151, 524–535 (2003).
doi: 10.1007/s00221-003-1504-7
Katayama, M. & Kawato, M. Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models. Biol. Cybern. 69, 353–362 (1993).
doi: 10.1007/BF01185407
Osu, R. & Gomi, H. Multijoint Muscle Regulation Mechanisms Examined by Measured Human Arm Stiffness and EMG Signals. J. Neurophysiol. 81, 1458–1468 (1999).
doi: 10.1152/jn.1999.81.4.1458
Shin, D., Kim, J. & Koike, Y. A Myokinetic Arm Model for Estimating Joint Torque and Stiffness From EMG Signals During Maintained Posture. J. Neurophysiol. 101, 387–401 (2009).
doi: 10.1152/jn.00584.2007
Gomi, H. & Kawato, M. Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biol. Cybern. 76, 163–171 (1997).
doi: 10.1007/s004220050329
Höppner, H., McIntyre, J. & Smagt, P. van der. Task Dependency of Grip Stiffness—A Study of Human Grip Force and Grip Stiffness Dependency during Two Different Tasks with Same Grip Forces. PLOS ONE 8, e80889 (2013).
doi: 10.1371/journal.pone.0080889
Miller, L. C. & Dewald, J. P. A. Involuntary paretic wrist/finger flexion forces and EMG increase with shoulder abduction load in individuals with chronic stroke. Clin. Neurophysiol. 123, 1216–1225 (2012).
doi: 10.1016/j.clinph.2012.01.009
Sporrong, H., Palmerud, G. & Herberts, P. Hand grip increases shoulder muscle activity, An EMG analysis with static hand contractions in 9 subjects. Acta Orthop. Scand. 67, 485–490 (1996).
doi: 10.3109/17453679608996674
Franklin, D. W., Osu, R., Burdet, E., Kawato, M. & Milner, T. E. Adaptation to Stable and Unstable Dynamics Achieved By Combined Impedance Control and Inverse Dynamics Model. J. Neurophysiol. 90, 3270–3282 (2003).
doi: 10.1152/jn.01112.2002

Auteurs

A Takagi (A)

Tokyo Institute of Technology, Institute of Innovative Research, Yokohama, Japan. takagi.a.ae@m.titech.ac.jp.
Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan. takagi.a.ae@m.titech.ac.jp.

G Xiong (G)

Tokyo Institute of Technology, Institute of Innovative Research, Yokohama, Japan.

H Kambara (H)

Tokyo Institute of Technology, Institute of Innovative Research, Yokohama, Japan.

Y Koike (Y)

Tokyo Institute of Technology, Institute of Innovative Research, Yokohama, Japan.

Classifications MeSH