Impact of BMI on HER2+ metastatic breast cancer patients treated with pertuzumab and/or trastuzumab emtansine. Real-world evidence.
Ado-Trastuzumab Emtansine
/ therapeutic use
Adult
Aged
Aged, 80 and over
Antibodies, Monoclonal, Humanized
/ therapeutic use
Antineoplastic Agents, Immunological
/ therapeutic use
Body Mass Index
Breast Neoplasms
/ drug therapy
Disease Progression
Female
Humans
Middle Aged
Obesity
/ complications
Overweight
/ complications
Progression-Free Survival
Receptor, ErbB-2
/ genetics
HER2-positive metastatic breast cancer
body mass index
pertuzumab
trastuzumab emtansine
Journal
Journal of cellular physiology
ISSN: 1097-4652
Titre abrégé: J Cell Physiol
Pays: United States
ID NLM: 0050222
Informations de publication
Date de publication:
11 2020
11 2020
Historique:
received:
08
11
2019
accepted:
04
12
2019
pubmed:
17
1
2020
medline:
9
3
2021
entrez:
17
1
2020
Statut:
ppublish
Résumé
Body mass index (BMI) is a main indicator of obesity and its association with breast cancer is well established. However, little is known in the metastatic setting, especially in HER2-positive patients. We assessed the influence of BMI on clinical outcomes of patients treated with pertuzumab and/or trastuzumab emtansine (T-DM1) for HER2+ metastatic breast cancer (mBC). BMI was addressed as a categorical variable, being classified on the basis of the following ranges, that is, 18.5-24.9, 25-29.9, and 30.0-34.9, namely, normal weight, overweight, and Class I obesity. The outcomes chosen were progression-free survival to first-line chemotherapy (PFS1) and overall survival (OS). Overall (N = 709), no impact of BMI was observed on PFS1 (p = .15), while BMI ≥ 30 was associated with worse OS (p = .003). In subjects who progressed to first line (N = 575), analyzing data across PFS1 quartiles and strata of disease burden, BMI predicted lower PFS1 in patients within the I PFS1 quartile and with the lowest disease burden (p = .001). Univariate analysis showed a detrimental effect of BMI ≥ 30 on OS for women within the I PFS1 quartile (p = .03). Results were confirmed in multivariate analysis. According to PFS1 quartiles a higher percentage of patients with high BMI and low disease burden progressed within 6 months of therapy. The effect of BMI on prognosis was also confirmed in multivariate analysis of OS for overall population. In our cohort, a BMI ≥ 30 correlated with worse OS in patients with HER2+ mBC who received pertuzumab and/or T-DM1 but had no impact on PFS to first line. BMI predicted worse I PFS1 quartile.
Substances chimiques
Antibodies, Monoclonal, Humanized
0
Antineoplastic Agents, Immunological
0
ERBB2 protein, human
EC 2.7.10.1
Receptor, ErbB-2
EC 2.7.10.1
pertuzumab
K16AIQ8CTM
Ado-Trastuzumab Emtansine
SE2KH7T06F
Types de publication
Journal Article
Multicenter Study
Observational Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
7900-7910Informations de copyright
© 2020 Wiley Periodicals, Inc.
Références
Baselga, J., Cortés, J., Kim, S. B., Im, S. A., Hegg, R., Im, Y. H., … Pedrini, L. CLEOPATRA Study Group (2012). Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. New England Journal of Medicine, 366, 109-119. https://doi.org/10.1056/NEJMoa1113216
Bhaskaran, K., Douglas, I., Forbes, H., dos-Santos-Silva, I., Leon, D. A., & Smeeth, L. (2014). Body-mass index and risk of 22 specific cancers: A population-based cohort study of 5·24 million UK adults. Lancet, 384, 755-765. https://doi.org/10.1016/S0140-6736(14)60892-8
Cleveland, R. J., Eng, S. M., Abrahamson, P. E., Britton, J. A., Teitelbaum, S. L., Neugut, A. I., & Gammon, M. D. (2007). Weight gain prior to diagnosis and survival from breast cancer. Cancer Epidemiology, Biomarkers & Prevention, 16, 1803-1811. https://doi.org/10.1158/1055-9965.EPI-06-0889
Conte, P. F., Guarneri, V., Bruzzi, P., Prochilo, T., Salvadori, B., Bolognesi, A., … Venturini, M. Gruppo Oncologico Nord Ovest (2004). Concomitant versus sequential administration of epirubicin and paclitaxel as first-line therapy in metastatic breast carcinoma: Results for the Gruppo Oncologico Nord Ovest randomized trial. Cancer, 101, 704-712. https://doi.org/10.1002/cncr.20400
De Censi, A., & Gennari, A. (2011). Insulin breast cancer connection: Confirmatory data set the stage for better care. Journal of Clinical Oncology, 29, 7-10. https://doi.org/10.1200/JCO.2010.32.3022
Denney-Wilson, E., Hardy, L. L., Dobbins, T., Okely, A. D., & Baur, L. A. (2008). Body mass index, waist circumference, and chronic disease risk factors in Australian adolescents. Archives of Pediatrics and Adolescent Medicine, 162, 566-573. https://doi.org/10.1001/archpedi.162.6.566
Fiorio, E., Mercanti, A., Terrasi, M., Micciolo, R., Remo, A., Auriemma, A., & Surmacz, E. (2008). Leptin/HER2 crosstalk in breast cancer: In vitro study and preliminary in vivo analysis. BMC Cancer, 8, 305. https://doi.org/10.1186/1471-2407-8-305
Flegal, K. M., Kit, B. K., & Graubard, B. I. (2014). Body mass index categories in observational studies of weight and risk of death. American Journal of Epidemiology, 180, 288-296. https://doi.org/10.1093/aje/kwu111
Gennari, A., Amadori, D., De Lena, M., Nanni, O., Bruzzi, P., Lorusso, V., & Conte, P. F. (2006). Lack of benefit of maintenance paclitaxel in first-line chemotherapy in metastatic breast cancer. Journal of Clinical Oncology, 24, 3912-3918. https://doi.org/10.1200/JCO.2006.06.1812
Gennari, A., Nanni, O., Puntoni, M., DeCensi, A., Scarpi, E., Conte, P., & Bruzzi, P. (2013). Body mass index and prognosis of metastatic breast cancer patients receiving first-line chemotherapy. Cancer Epidemiology, Biomarkers & Prevention, 22, 1862-1867. https://doi.org/10.1158/1055-9965.EPI-13-0595
Jung, S. Y., Rosenzweig, M., Sereika, S. M., Linkov, F., Brufsky, A., & Weissfeld, J. L. (2012). Factors associated with mortality after breast cancer metastasis. Cancer Causes & Control, 23, 103-112. https://doi.org/10.1007/s10552-011-9859-8
Kearns, K., Dee, A., Fitzgerald, A. P., Doherty, E., & Perry, I. J. (2014). Chronic disease burden associated with overweight and obesity in Ireland: The effects of a small BMI reduction at population level. BMC Public Health, 14, 143. https://doi.org/10.1186/1471-2458-14-143
Kern, P. A., Ranganathan, S., Li, C., Wood, L., & Ranganathan, G. (2001). Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. American Journal of Physiology-Endocrinology and Metabolism, 280, E745-E75. https://doi.org/10.1152/ajpendo.2001.280.5.E745
Khan, S. S., Ning, H., Wilkins, J. T., Allen, N., Carnethon, M., Berry, J. D., & Lloyd-Jones, D. M. (2018). Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiology, 3, 280-287. https://doi.org/10.1001/jamacardio.2018.0022
Kroenke, C. H., Chen, W. Y., Rosner, B., & Holmes, M. D. (2005). Weight, weight gain, and survival after breast cancer diagnosis. Journal of Clinical Oncology, 23, 1370-1378. https://ascopubs.org/doi/10.1200/JCO.2005.01.079
Lagathu, C., Bastard, J. P., Auclair, M., Maachi, M., Capeau, J., & Caron, M. (2003). Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: Prevention by rosiglitazone. Biochemical and Biophysical Research Communications, 311, 372-379. https://doi.org/10.1016/j.bbrc.2003.10.013
Martel, S., Poletto, E., Ferreira, A. R., Lambertini, M., Sottotetti, F., Bertolini, I., & Puglisi, F. (2018). Impact of body mass index on the clinical outcomes of patients with HER2-positive metastatic breast cancer. Breast (Edinburgh, Scotland), 37, 142-147. https://doi.org/10.1016/j.breast.2017.11.004
Morimoto, L., White, E., Chen, Z., Chlebowski, R., Hays, J., Kuller, L., & McTiernan, A. (2002). Obesity, body size, and risk of postmenopausal breast cancer: The women's health initiative (United States). Cancer Causes & Control, 13, 741-751. www.jstor.org/stable/3553553
Parolin, V., Fiorio, E., Mercanti, A., Riolfi, M., Cetto, G. L., Surmacz, E., & Molino, A. (2010). Impact of BMI on clinical outcome of HER2-positive breast cancer. Journal of Clinical Oncology, 28(Suppl. 15), 1130. https://doi.org/10.1200/jco.2010.28.15_suppl.1130. abstract 1130.
Passardi, A., Massa, I., Zoli, W., Gianni, L., Milandri, C., Zumaglini, F., & Amadori, D. (2006). Phase II study of gemcitabine, doxorubicin and paclitaxel (GAT) as first-line chemotherapy for metastatic breast cancer: A translational research experience. BMC Cancer, 6, 76. https://doi.org/10.1186/1471-2407-6-76
Picon-Ruiz, M., Morata-Tarifa, C., Valle-Goffin, J. J., Friedman, E. R., & Slingerland, J. M. (2017). Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA: A Cancer Journal for Clinicians, 67, 378-397. https://doi.org/10.3322/caac.21405
Picon-Ruiz, M., Pan, C., Drews-Elger, K., Jang, K., Besser, A. H., Zhao, D., & Slingerland, J. M. (2016). Interactions between adipocytes and breast cancer cells stimulate cytokine production and drive Src/Sox2/miR-302b mediated malignant progression. Cancer Research, 76, 491-504. https://doi.org/10.1158/0008-5472.CAN-15-0927
Pizzuti, L., Marchetti, P., Natoli, C., Gamucci, T., Santini, D., Scinto, A. F., & Vici, P. (2017). Fasting glucose and body mass index as predictors of activity in breast cancer patients treated with everolimus-exemestane: The EverExt study. Scientific Reports, 7, 10597. https://doi.org/10.1038/s41598-017-10061-2
Pizzuti, L., Sergi, D., Sperduti, I., Lauro, L. D., Mazzotta, M., Botti, C., & Vici, P. (2018). Body mass index in HER2-negative metastatic breast cancer treated with first-line paclitaxel and bevacizumab. Cancer Biology & Therapy, 19, 328-334. https://doi.org/10.1080/15384047.2017.1416938
Purohit, A., & Reed, M. J. (2002). Regulation of estrogen synthesis in postmenopausal women. Steroids, 67, 979-983. https://doi.org/10.1016/S0039-128X(02)00046-6
Rose, D. P., & Vona-Davis, L. (2009). Influence of obesity on breast cancer receptor status and prognosis. Expert Review of Anticancer Therapy, 9, 1091-1101. https://doi.org/10.1586/era.09.71
Saxena, N. K., Taliaferro-Smith, L., Knight, B. B., Merlin, D., Anania, F. A., O'Regan, R. M., & Sharma, D. (2008). Bidirectional crosstalk between leptin and insulin-like growth factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor. Cancer Research, 68, 9712-9722. https://doi.org/10.1158/0008-5472.CAN-08-1952
Smith, K. B., & Smith, M. S. (2016). Obesity statistics. Primary Care: Clinics in Office Practice, 43, 121-135. https://doi.org/10.1016/j.pop.2015.10.001
Strulov Shachar, S., & Williams, G. R. (2017). The obesity paradox in cancer-moving beyond BMI. Cancer Epidemiology, Biomarkers & Prevention, 26, 13-16. https://doi.org/10.1158/1055-9965.EPI-16-0439
Tornatore, L., Thotakura, A. K., Bennett, J., Moretti, M., & Franzoso, G. (2012). The nuclear factor kappa B signaling pathway: Integrating metabolism with inflammation. Trends in Cell Biology, 22, 557-566. https://doi.org/10.1016/j.tcb.2012.08.001
van Kruijsdijk, R. C., van der Wall, E., & Visseren, F. L. (2009). Obesity and cancer: The role of dysfunctional adipose tissue. Cancer Epidemiology, Biomarkers & Prevention, 18, 2569-2578. https://doi.org/10.1158/1055-9965.EPI-09-0372
Verma, S., Miles, D., Gianni, L., Krop, I. E., Welslau, M., Baselga, J., … Lu, M. W. (2012). Trastuzumab emtansine for HER2-positive advanced breast cancer. New England Journal of Medicine, 367, 1783-1791. https://doi.org/10.1056/NEJMoa1209124
von Drygalski, A., Tran, T. B., Messer, K., Pu, M., Corringham, S., Nelson, C., & Ball, E. D. (2011). Obesity is an independent predictor of poor survival in metastatic breast cancer: Retrospective analysis of a patient cohort whose treatment included high-dose chemotherapy and autologous stem cell support. International Journal of Breast Cancer, 2011, 523276-8. https://doi.org/10.4061/2011/523276
Zielinski, C., Láng, I., Inbar, M., Kahán, Z., Greil, R., Beslija, S., … Brodowicz, T. TURANDOT investigators (2016). Bevacizumab plus paclitaxel versus bevacizumab plus capecitabine as first-line treatment for HER2-negative metastatic breast cancer (TURANDOT): Primary endpoint results of a randomised, open-label, non-inferiority, phase 3 trial. Lancet Oncology, 17, 1230-1239. https://doi.org/10.1016/S1470-2045(16)30154-1