Diversity, compositional and functional differences between gut microbiota of children and adults.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 01 2020
23 01 2020
Historique:
received:
08
02
2019
accepted:
31
12
2019
entrez:
25
1
2020
pubmed:
25
1
2020
medline:
11
11
2020
Statut:
epublish
Résumé
The gut microbiota has been shown to play diverse roles in human health and disease although the underlying mechanisms have not yet been fully elucidated. Large cohort studies can provide further understanding into inter-individual differences, with more precise characterization of the pathways by which the gut microbiota influences human physiology and disease processes. Here, we aimed to profile the stool microbiome of children and adults from two population-based cohort studies, comprising 2,111 children in the age-range of 9 to 12 years (the Generation R Study) and 1,427 adult individuals in the range of 46 to 88 years of age (the Rotterdam Study). For the two cohorts, 16S rRNA gene profile datasets derived from the Dutch population were generated. The comparison of the two cohorts showed that children had significantly lower gut microbiome diversity. Furthermore, we observed higher relative abundances of genus Bacteroides in children and higher relative abundances of genus Blautia in adults. Predicted functional metagenome analysis showed an overrepresentation of the glycan degradation pathways, riboflavin (vitamin B2), pyridoxine (vitamin B6) and folate (vitamin B9) biosynthesis pathways in children. In contrast, the gut microbiome of adults showed higher abundances of carbohydrate metabolism pathways, beta-lactam resistance, thiamine (vitamin B1) and pantothenic (vitamin B5) biosynthesis pathways. A predominance of catabolic pathways in children (valine, leucine and isoleucine degradation) as compared to biosynthetic pathways in adults (valine, leucine and isoleucine biosynthesis) suggests a functional microbiome switch to the latter in adult individuals. Overall, we identified compositional and functional differences in gut microbiome between children and adults in a population-based setting. These microbiome profiles can serve as reference for future studies on specific human disease susceptibility in childhood, adulthood and specific diseased populations.
Identifiants
pubmed: 31974429
doi: 10.1038/s41598-020-57734-z
pii: 10.1038/s41598-020-57734-z
pmc: PMC6978381
doi:
Substances chimiques
RNA, Ribosomal, 16S
0
Types de publication
Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1040Références
Carroll, I. M., Chang, Y.-H., Park, J., Sartor, R. B. & Ringel, Y. Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog. 2, 19 (2010).
pubmed: 21143915
pmcid: 3018384
doi: 10.1186/1757-4749-2-19
Carroll, I. M. et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver. Physiol. 301, G799–G807 (2011).
pubmed: 21737778
pmcid: 3220325
doi: 10.1152/ajpgi.00154.2011
Frank, D. N. et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 179–184 (2011).
pubmed: 20839241
doi: 10.1002/ibd.21339
pmcid: 20839241
Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104, 13780–13785 (2007).
pubmed: 17699621
doi: 10.1073/pnas.0706625104
pmcid: 17699621
Kassinen, A. et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133, 24–33 (2007).
pubmed: 17631127
doi: 10.1053/j.gastro.2007.04.005
Mai, V. et al. Fecal microbiota in premature infants prior to necrotizing enterocolitis. PloS One 6, e20647–e20647 (2011).
pubmed: 21674011
pmcid: 3108958
doi: 10.1371/journal.pone.0020647
Malinen, E. et al. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am. J. Gastroenterol. 100, 373 (2005).
pubmed: 15667495
doi: 10.1111/j.1572-0241.2005.40312.x
Ringel, Y. & Carroll, I. M. Alterations in the intestinal microbiota and functional bowel symptoms. Gastrointest. Endosc. Clin. N. Am. 19, 141–150 (2009).
pubmed: 19232285
doi: 10.1016/j.giec.2008.12.004
pmcid: 19232285
Swidsinski, A., Loening-Baucke, V., Verstraelen, H., Osowska, S. & Doerffel, Y. Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology 135, 568–579 (2008).
pubmed: 18570896
doi: 10.1053/j.gastro.2008.04.017
pmcid: 18570896
Kalliomäki, M., Carmen Collado, M., Salminen, S. & Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 87, 534–538 (2008).
pubmed: 18326589
doi: 10.1093/ajcn/87.3.534
Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).
pubmed: 17183309
doi: 10.1038/4441022a
Penders, J. et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 56, 661–667 (2007).
pubmed: 17047098
doi: 10.1136/gut.2006.100164
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
pubmed: 17183312
doi: 10.1038/nature05414
Vael, C. & Desager, K. The importance of the development of the intestinal microbiota in infancy. Curr. Opin. Pediatr. 21, 794–800 (2009).
pubmed: 19770768
doi: 10.1097/MOP.0b013e328332351b
Wang, M. et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J. Allergy Clin. Immunol. 121, 129–134 (2008).
pubmed: 18028995
doi: 10.1016/j.jaci.2007.09.011
Floch, M. H. Advances in Intestinal Microecology. Nutr. Clin. Pract. 27, 193–194 (2012).
pubmed: 22383451
doi: 10.1177/0884533612439708
Ringel-Kulka, T. Targeting the intestinal microbiota in the pediatric population. Nutr. Clin. Pract. 27, 226–234 (2012).
pubmed: 22402406
doi: 10.1177/0884533612439895
pmcid: 22402406
Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177–e177 (2007).
pubmed: 17594176
pmcid: 1896187
doi: 10.1371/journal.pbio.0050177
Tiihonen, K., Ouwehand, A. C. & Rautonen, N. Human intestinal microbiota and healthy ageing. Ageing Res. Rev. 9, 107–116 (2010).
pubmed: 19874918
doi: 10.1016/j.arr.2009.10.004
pmcid: 19874918
Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
pubmed: 22699611
pmcid: 3376388
doi: 10.1038/nature11053
Kozyrskyj, A. L., Ernst, P. & Becker, A. B. Increased risk of childhood asthma from antibiotic use in early life. Chest 131, 1753–1759 (2007).
pubmed: 17413050
doi: 10.1378/chest.06-3008
Risnes, K. R., Belanger, K., Murk, W. & Bracken, M. B. Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings in a cohort of 1,401 US children. Am. J. Epidemiol. 173, 310–318 (2011).
pubmed: 21190986
doi: 10.1093/aje/kwq400
Hviid, A., Svanström, H. & Frisch, M. Antibiotic use and inflammatory bowel diseases in childhood. Gut 60, 49–54 (2011).
pubmed: 20966024
doi: 10.1136/gut.2010.219683
Kooijman, M. N. et al. The Generation R Study: design and cohort update 2017. Eur. J. Epidemiol. 31, 1243–1264 (2016).
pubmed: 28070760
doi: 10.1007/s10654-016-0224-9
Ikram, M. A. et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur. J. Epidemiol. 32, 807–850 (2017).
pubmed: 29064009
pmcid: 5662692
doi: 10.1007/s10654-017-0321-4
Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).
pubmed: 24558975
pmcid: 3940169
doi: 10.1186/2049-2618-2-6
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
pubmed: 20383131
pmcid: 3156573
doi: 10.1038/nmeth.f.303
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
pubmed: 23955772
doi: 10.1038/nmeth.2604
Schmieder, R., Lim, Y. W., Rohwer, F. & Edwards, R. TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets. BMC bioinformatics 11, 341–341 (2010).
pubmed: 20573248
pmcid: 2910026
doi: 10.1186/1471-2105-11-341
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).
pubmed: 24142950
doi: 10.1093/bioinformatics/btt593
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
pubmed: 23193283
doi: 10.1093/nar/gks1219
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
pubmed: 17586664
pmcid: 1950982
doi: 10.1128/AEM.00062-07
Benson, A. K. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. USA 107, 18933–18938 (2010).
pubmed: 20937875
doi: 10.1073/pnas.1007028107
pmcid: 20937875
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
pubmed: 23202435
doi: 10.1038/nmeth.2276
pmcid: 23202435
R Foundation for Statistical Computing, Vienna, Austria. A language and environment for statistical computing, https://www.R-project.org (2010).
Oksanen, J. et al. Vegan: community ecology package, http://CRAN.R-project.org/package=vegan (2013).
McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One 8, e61217–e61217 (2013).
pubmed: 23630581
pmcid: 3632530
doi: 10.1371/journal.pone.0061217
Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79–R79 (2012).
pubmed: 23013615
pmcid: 3506950
doi: 10.1186/gb-2012-13-9-r79
Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141 (2018).
pubmed: 29321519
pmcid: 5762761
doi: 10.1038/s41467-017-02573-2
Fu, J. et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ. Res. 117, 817–824 (2015).
pubmed: 26358192
pmcid: 4596485
doi: 10.1161/CIRCRESAHA.115.306807
Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).
pubmed: 27126040
pmcid: 5240844
doi: 10.1126/science.aad3369
Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).
pubmed: 27126039
doi: 10.1126/science.aad3503
Medina-Gomez, C. et al. Bone mass and strength in school-age children exhibit sexual dimorphism related to differences in lean mass: The Generation R Study. J. Bone Miner. Res. 31, 1099–1106 (2016).
pubmed: 26599073
doi: 10.1002/jbmr.2755
pmcid: 26599073
Medina-Gómez, C. et al. BMD loci contribute to ethnic and developmental differences in skeletal fragility across populations: assessment of evolutionary selection pressures. Mol. Biol. Evol. 32, 2961–2972 (2015).
pubmed: 26226985
pmcid: 4651235
doi: 10.1093/molbev/msv170
Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
pubmed: 23975157
pmcid: 3819121
doi: 10.1038/nbt.2676
Abubucker, S. et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol. 8, e1002358–e1002358 (2012).
pubmed: 22719234
pmcid: 3374609
doi: 10.1371/journal.pcbi.1002358
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
pubmed: 3218848
pmcid: 3218848
doi: 10.1186/gb-2011-12-6-r60
Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110, 9066–9071 (2013).
pubmed: 23671105
doi: 10.1073/pnas.1219451110
pmcid: 23671105
Anderson, K. L. & Salyers, A. A. Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes. J. Bacteriol. 171, 3192–3198 (1989).
pubmed: 2722747
pmcid: 210036
doi: 10.1128/JB.171.6.3192-3198.1989
Chung, W. S. F. et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 14, 3 (2016).
pubmed: 26754945
pmcid: 4709873
doi: 10.1186/s12915-015-0224-3
Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).
pubmed: 22491358
pmcid: 4005082
doi: 10.1038/nrmicro2746
Xu, J. et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5, e156–e156 (2007).
pubmed: 17579514
pmcid: 1892571
doi: 10.1371/journal.pbio.0050156
Martínez, I. et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 7, 269–280 (2013).
pubmed: 23038174
doi: 10.1038/ismej.2012.104
Chen, W., Liu, F., Ling, Z., Tong, X. & Xiang, C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PloS One 7, e39743–e39743 (2012).
pubmed: 22761885
pmcid: 3386193
doi: 10.1371/journal.pone.0039743
Murri, M. et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 11, 46 (2013).
pubmed: 23433344
pmcid: 3621820
doi: 10.1186/1741-7015-11-46
Hou, A. Y., Kaczmarek, J. L., Khan, N. A. & Holscher, H. D. Dietary fiber and the human gastrointestinal microbiota as predictors of bone health. FASEB J. 31, lb322 (2017).
doi: 10.1096/fj.201601082R
Bajaj, J. S. et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G675–G685 (2012).
pubmed: 22821944
pmcid: 3468538
doi: 10.1152/ajpgi.00152.2012
Hong, P.-Y., Croix, J. A., Greenberg, E., Gaskins, H. R. & Mackie, R. I. Pyrosequencing-based analysis of the mucosal microbiota in healthy individuals reveals ubiquitous bacterial groups and micro-heterogeneity. PloS One 6, e25042–e25042 (2011).
pubmed: 21966408
pmcid: 3178588
doi: 10.1371/journal.pone.0025042
Nikaido, H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33, 1831–1836 (1989).
pubmed: 2692513
pmcid: 172772
doi: 10.1128/AAC.33.11.1831
Shivaramaiah, H. S., Relhan, N., Pathengay, A., Mohan, N. & Flynn, H. W. Endophthalmitis caused by gram-positive bacteria resistant to vancomycin: clinical settings, causative organisms, antimicrobial susceptibilities, and treatment outcomes. Am. J. Ophthalmol. Case Rep. 10, 211–214 (2018).
pubmed: 29552670
pmcid: 5854869
doi: 10.1016/j.ajoc.2018.02.030
Wrona, I. E., Agouridas, V. & Panek, J. S. Design and synthesis of ansamycin antibiotics. C. R. Chim. 11, 1483–1522 (2008).
doi: 10.1016/j.crci.2008.07.003
Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
doi: 10.1038/nature11234
Carroll, I. M., Ringel-Kulka, T., Siddle, J. P., Klaenhammer, T. R. & Ringel, Y. Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PloS One 7, e46953–e46953 (2012).
pubmed: 23071673
pmcid: 3465312
doi: 10.1371/journal.pone.0046953
Dominianni, C., Wu, J., Hayes, R. B. & Ahn, J. Comparison of methods for fecal microbiome biospecimen collection. BMC Microbiol. 14, 103 (2014).
pubmed: 24758293
pmcid: 4005852
doi: 10.1186/1471-2180-14-103
Gorzelak, M. A. et al. Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool. PloS One 10, e0134802–e0134802 (2015).
pubmed: 26252519
pmcid: 4529225
doi: 10.1371/journal.pone.0134802
Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R. & Fierer, N. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett. 307, 80–86 (2010).
pubmed: 20412303
pmcid: 3148093
doi: 10.1111/j.1574-6968.2010.01965.x
Sinha, R. et al. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiol. Biomarkers Prev. 25, 407–416 (2016).
pubmed: 26604270
doi: 10.1158/1055-9965.EPI-15-0951
Tedjo, D. I. et al. The effect of sampling and storage on the fecal microbiota composition in healthy and diseased subjects. PloS One 10, e0126685–e0126685 (2015).
pubmed: 26024217
pmcid: 4449036
doi: 10.1371/journal.pone.0126685
Costea, P. I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).
pubmed: 28967887
doi: 10.1038/nbt.3960
Santiago, A. et al. Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol. 14, 112 (2014).
pubmed: 24884524
pmcid: 4021188
doi: 10.1186/1471-2180-14-112
Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).
pubmed: 28967885
pmcid: 5839636
doi: 10.1038/nbt.3981