Diversity, compositional and functional differences between gut microbiota of children and adults.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
23 01 2020
Historique:
received: 08 02 2019
accepted: 31 12 2019
entrez: 25 1 2020
pubmed: 25 1 2020
medline: 11 11 2020
Statut: epublish

Résumé

The gut microbiota has been shown to play diverse roles in human health and disease although the underlying mechanisms have not yet been fully elucidated. Large cohort studies can provide further understanding into inter-individual differences, with more precise characterization of the pathways by which the gut microbiota influences human physiology and disease processes. Here, we aimed to profile the stool microbiome of children and adults from two population-based cohort studies, comprising 2,111 children in the age-range of 9 to 12 years (the Generation R Study) and 1,427 adult individuals in the range of 46 to 88 years of age (the Rotterdam Study). For the two cohorts, 16S rRNA gene profile datasets derived from the Dutch population were generated. The comparison of the two cohorts showed that children had significantly lower gut microbiome diversity. Furthermore, we observed higher relative abundances of genus Bacteroides in children and higher relative abundances of genus Blautia in adults. Predicted functional metagenome analysis showed an overrepresentation of the glycan degradation pathways, riboflavin (vitamin B2), pyridoxine (vitamin B6) and folate (vitamin B9) biosynthesis pathways in children. In contrast, the gut microbiome of adults showed higher abundances of carbohydrate metabolism pathways, beta-lactam resistance, thiamine (vitamin B1) and pantothenic (vitamin B5) biosynthesis pathways. A predominance of catabolic pathways in children (valine, leucine and isoleucine degradation) as compared to biosynthetic pathways in adults (valine, leucine and isoleucine biosynthesis) suggests a functional microbiome switch to the latter in adult individuals. Overall, we identified compositional and functional differences in gut microbiome between children and adults in a population-based setting. These microbiome profiles can serve as reference for future studies on specific human disease susceptibility in childhood, adulthood and specific diseased populations.

Identifiants

pubmed: 31974429
doi: 10.1038/s41598-020-57734-z
pii: 10.1038/s41598-020-57734-z
pmc: PMC6978381
doi:

Substances chimiques

RNA, Ribosomal, 16S 0

Types de publication

Comparative Study Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1040

Références

Carroll, I. M., Chang, Y.-H., Park, J., Sartor, R. B. & Ringel, Y. Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog. 2, 19 (2010).
pubmed: 21143915 pmcid: 3018384 doi: 10.1186/1757-4749-2-19
Carroll, I. M. et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver. Physiol. 301, G799–G807 (2011).
pubmed: 21737778 pmcid: 3220325 doi: 10.1152/ajpgi.00154.2011
Frank, D. N. et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 179–184 (2011).
pubmed: 20839241 doi: 10.1002/ibd.21339 pmcid: 20839241
Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104, 13780–13785 (2007).
pubmed: 17699621 doi: 10.1073/pnas.0706625104 pmcid: 17699621
Kassinen, A. et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133, 24–33 (2007).
pubmed: 17631127 doi: 10.1053/j.gastro.2007.04.005
Mai, V. et al. Fecal microbiota in premature infants prior to necrotizing enterocolitis. PloS One 6, e20647–e20647 (2011).
pubmed: 21674011 pmcid: 3108958 doi: 10.1371/journal.pone.0020647
Malinen, E. et al. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am. J. Gastroenterol. 100, 373 (2005).
pubmed: 15667495 doi: 10.1111/j.1572-0241.2005.40312.x
Ringel, Y. & Carroll, I. M. Alterations in the intestinal microbiota and functional bowel symptoms. Gastrointest. Endosc. Clin. N. Am. 19, 141–150 (2009).
pubmed: 19232285 doi: 10.1016/j.giec.2008.12.004 pmcid: 19232285
Swidsinski, A., Loening-Baucke, V., Verstraelen, H., Osowska, S. & Doerffel, Y. Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology 135, 568–579 (2008).
pubmed: 18570896 doi: 10.1053/j.gastro.2008.04.017 pmcid: 18570896
Kalliomäki, M., Carmen Collado, M., Salminen, S. & Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 87, 534–538 (2008).
pubmed: 18326589 doi: 10.1093/ajcn/87.3.534
Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).
pubmed: 17183309 doi: 10.1038/4441022a
Penders, J. et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 56, 661–667 (2007).
pubmed: 17047098 doi: 10.1136/gut.2006.100164
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
pubmed: 17183312 doi: 10.1038/nature05414
Vael, C. & Desager, K. The importance of the development of the intestinal microbiota in infancy. Curr. Opin. Pediatr. 21, 794–800 (2009).
pubmed: 19770768 doi: 10.1097/MOP.0b013e328332351b
Wang, M. et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J. Allergy Clin. Immunol. 121, 129–134 (2008).
pubmed: 18028995 doi: 10.1016/j.jaci.2007.09.011
Floch, M. H. Advances in Intestinal Microecology. Nutr. Clin. Pract. 27, 193–194 (2012).
pubmed: 22383451 doi: 10.1177/0884533612439708
Ringel-Kulka, T. Targeting the intestinal microbiota in the pediatric population. Nutr. Clin. Pract. 27, 226–234 (2012).
pubmed: 22402406 doi: 10.1177/0884533612439895 pmcid: 22402406
Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177–e177 (2007).
pubmed: 17594176 pmcid: 1896187 doi: 10.1371/journal.pbio.0050177
Tiihonen, K., Ouwehand, A. C. & Rautonen, N. Human intestinal microbiota and healthy ageing. Ageing Res. Rev. 9, 107–116 (2010).
pubmed: 19874918 doi: 10.1016/j.arr.2009.10.004 pmcid: 19874918
Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
pubmed: 22699611 pmcid: 3376388 doi: 10.1038/nature11053
Kozyrskyj, A. L., Ernst, P. & Becker, A. B. Increased risk of childhood asthma from antibiotic use in early life. Chest 131, 1753–1759 (2007).
pubmed: 17413050 doi: 10.1378/chest.06-3008
Risnes, K. R., Belanger, K., Murk, W. & Bracken, M. B. Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings in a cohort of 1,401 US children. Am. J. Epidemiol. 173, 310–318 (2011).
pubmed: 21190986 doi: 10.1093/aje/kwq400
Hviid, A., Svanström, H. & Frisch, M. Antibiotic use and inflammatory bowel diseases in childhood. Gut 60, 49–54 (2011).
pubmed: 20966024 doi: 10.1136/gut.2010.219683
Kooijman, M. N. et al. The Generation R Study: design and cohort update 2017. Eur. J. Epidemiol. 31, 1243–1264 (2016).
pubmed: 28070760 doi: 10.1007/s10654-016-0224-9
Ikram, M. A. et al. The Rotterdam Study: 2018 update on objectives, design and main results. Eur. J. Epidemiol. 32, 807–850 (2017).
pubmed: 29064009 pmcid: 5662692 doi: 10.1007/s10654-017-0321-4
Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).
pubmed: 24558975 pmcid: 3940169 doi: 10.1186/2049-2618-2-6
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
pubmed: 20383131 pmcid: 3156573 doi: 10.1038/nmeth.f.303
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
pubmed: 23955772 doi: 10.1038/nmeth.2604
Schmieder, R., Lim, Y. W., Rohwer, F. & Edwards, R. TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets. BMC bioinformatics 11, 341–341 (2010).
pubmed: 20573248 pmcid: 2910026 doi: 10.1186/1471-2105-11-341
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).
pubmed: 24142950 doi: 10.1093/bioinformatics/btt593
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
pubmed: 23193283 doi: 10.1093/nar/gks1219
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
pubmed: 17586664 pmcid: 1950982 doi: 10.1128/AEM.00062-07
Benson, A. K. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. USA 107, 18933–18938 (2010).
pubmed: 20937875 doi: 10.1073/pnas.1007028107 pmcid: 20937875
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).
pubmed: 23202435 doi: 10.1038/nmeth.2276 pmcid: 23202435
R Foundation for Statistical Computing, Vienna, Austria. A language and environment for statistical computing, https://www.R-project.org (2010).
Oksanen, J. et al. Vegan: community ecology package, http://CRAN.R-project.org/package=vegan (2013).
McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One 8, e61217–e61217 (2013).
pubmed: 23630581 pmcid: 3632530 doi: 10.1371/journal.pone.0061217
Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79–R79 (2012).
pubmed: 23013615 pmcid: 3506950 doi: 10.1186/gb-2012-13-9-r79
Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141 (2018).
pubmed: 29321519 pmcid: 5762761 doi: 10.1038/s41467-017-02573-2
Fu, J. et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ. Res. 117, 817–824 (2015).
pubmed: 26358192 pmcid: 4596485 doi: 10.1161/CIRCRESAHA.115.306807
Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).
pubmed: 27126040 pmcid: 5240844 doi: 10.1126/science.aad3369
Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).
pubmed: 27126039 doi: 10.1126/science.aad3503
Medina-Gomez, C. et al. Bone mass and strength in school-age children exhibit sexual dimorphism related to differences in lean mass: The Generation R Study. J. Bone Miner. Res. 31, 1099–1106 (2016).
pubmed: 26599073 doi: 10.1002/jbmr.2755 pmcid: 26599073
Medina-Gómez, C. et al. BMD loci contribute to ethnic and developmental differences in skeletal fragility across populations: assessment of evolutionary selection pressures. Mol. Biol. Evol. 32, 2961–2972 (2015).
pubmed: 26226985 pmcid: 4651235 doi: 10.1093/molbev/msv170
Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).
pubmed: 23975157 pmcid: 3819121 doi: 10.1038/nbt.2676
Abubucker, S. et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol. 8, e1002358–e1002358 (2012).
pubmed: 22719234 pmcid: 3374609 doi: 10.1371/journal.pcbi.1002358
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
pubmed: 3218848 pmcid: 3218848 doi: 10.1186/gb-2011-12-6-r60
Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110, 9066–9071 (2013).
pubmed: 23671105 doi: 10.1073/pnas.1219451110 pmcid: 23671105
Anderson, K. L. & Salyers, A. A. Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes. J. Bacteriol. 171, 3192–3198 (1989).
pubmed: 2722747 pmcid: 210036 doi: 10.1128/JB.171.6.3192-3198.1989
Chung, W. S. F. et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 14, 3 (2016).
pubmed: 26754945 pmcid: 4709873 doi: 10.1186/s12915-015-0224-3
Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).
pubmed: 22491358 pmcid: 4005082 doi: 10.1038/nrmicro2746
Xu, J. et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5, e156–e156 (2007).
pubmed: 17579514 pmcid: 1892571 doi: 10.1371/journal.pbio.0050156
Martínez, I. et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 7, 269–280 (2013).
pubmed: 23038174 doi: 10.1038/ismej.2012.104
Chen, W., Liu, F., Ling, Z., Tong, X. & Xiang, C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PloS One 7, e39743–e39743 (2012).
pubmed: 22761885 pmcid: 3386193 doi: 10.1371/journal.pone.0039743
Murri, M. et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 11, 46 (2013).
pubmed: 23433344 pmcid: 3621820 doi: 10.1186/1741-7015-11-46
Hou, A. Y., Kaczmarek, J. L., Khan, N. A. & Holscher, H. D. Dietary fiber and the human gastrointestinal microbiota as predictors of bone health. FASEB J. 31, lb322 (2017).
doi: 10.1096/fj.201601082R
Bajaj, J. S. et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G675–G685 (2012).
pubmed: 22821944 pmcid: 3468538 doi: 10.1152/ajpgi.00152.2012
Hong, P.-Y., Croix, J. A., Greenberg, E., Gaskins, H. R. & Mackie, R. I. Pyrosequencing-based analysis of the mucosal microbiota in healthy individuals reveals ubiquitous bacterial groups and micro-heterogeneity. PloS One 6, e25042–e25042 (2011).
pubmed: 21966408 pmcid: 3178588 doi: 10.1371/journal.pone.0025042
Nikaido, H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33, 1831–1836 (1989).
pubmed: 2692513 pmcid: 172772 doi: 10.1128/AAC.33.11.1831
Shivaramaiah, H. S., Relhan, N., Pathengay, A., Mohan, N. & Flynn, H. W. Endophthalmitis caused by gram-positive bacteria resistant to vancomycin: clinical settings, causative organisms, antimicrobial susceptibilities, and treatment outcomes. Am. J. Ophthalmol. Case Rep. 10, 211–214 (2018).
pubmed: 29552670 pmcid: 5854869 doi: 10.1016/j.ajoc.2018.02.030
Wrona, I. E., Agouridas, V. & Panek, J. S. Design and synthesis of ansamycin antibiotics. C. R. Chim. 11, 1483–1522 (2008).
doi: 10.1016/j.crci.2008.07.003
Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
doi: 10.1038/nature11234
Carroll, I. M., Ringel-Kulka, T., Siddle, J. P., Klaenhammer, T. R. & Ringel, Y. Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PloS One 7, e46953–e46953 (2012).
pubmed: 23071673 pmcid: 3465312 doi: 10.1371/journal.pone.0046953
Dominianni, C., Wu, J., Hayes, R. B. & Ahn, J. Comparison of methods for fecal microbiome biospecimen collection. BMC Microbiol. 14, 103 (2014).
pubmed: 24758293 pmcid: 4005852 doi: 10.1186/1471-2180-14-103
Gorzelak, M. A. et al. Methods for improving human gut microbiome data by reducing variability through sample processing and storage of stool. PloS One 10, e0134802–e0134802 (2015).
pubmed: 26252519 pmcid: 4529225 doi: 10.1371/journal.pone.0134802
Lauber, C. L., Zhou, N., Gordon, J. I., Knight, R. & Fierer, N. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett. 307, 80–86 (2010).
pubmed: 20412303 pmcid: 3148093 doi: 10.1111/j.1574-6968.2010.01965.x
Sinha, R. et al. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiol. Biomarkers Prev. 25, 407–416 (2016).
pubmed: 26604270 doi: 10.1158/1055-9965.EPI-15-0951
Tedjo, D. I. et al. The effect of sampling and storage on the fecal microbiota composition in healthy and diseased subjects. PloS One 10, e0126685–e0126685 (2015).
pubmed: 26024217 pmcid: 4449036 doi: 10.1371/journal.pone.0126685
Costea, P. I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).
pubmed: 28967887 doi: 10.1038/nbt.3960
Santiago, A. et al. Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol. 14, 112 (2014).
pubmed: 24884524 pmcid: 4021188 doi: 10.1186/1471-2180-14-112
Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).
pubmed: 28967885 pmcid: 5839636 doi: 10.1038/nbt.3981

Auteurs

Djawad Radjabzadeh (D)

Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.

Cindy G Boer (CG)

Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.

Sanne A Beth (SA)

Department of Paediatrics, Erasmus MC, Rotterdam, The Netherlands.
The Generation R Study, Erasmus MC, Rotterdam, The Netherlands.

Pelle van der Wal (P)

Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.

Jessica C Kiefte-De Jong (JC)

Department of Paediatrics, Erasmus MC, Rotterdam, The Netherlands.
The Generation R Study, Erasmus MC, Rotterdam, The Netherlands.
Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
Department of Public Health and Primary Care/LUMC Campus The Hague, Leiden University Medical Centre, Leiden, The Netherlands.

Michelle A E Jansen (MAE)

Department of Paediatrics, Erasmus MC, Rotterdam, The Netherlands.

Sergey R Konstantinov (SR)

Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands.

Maikel P Peppelenbosch (MP)

Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands.

John P Hays (JP)

Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.

Vincent W V Jaddoe (VWV)

The Generation R Study, Erasmus MC, Rotterdam, The Netherlands.
Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.

M Arfan Ikram (MA)

Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.

Fernando Rivadeneira (F)

Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
The Generation R Study, Erasmus MC, Rotterdam, The Netherlands.
Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.

Joyce B J van Meurs (JBJ)

Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.

André G Uitterlinden (AG)

Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
The Generation R Study, Erasmus MC, Rotterdam, The Netherlands.
Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.

Carolina Medina-Gomez (C)

Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
The Generation R Study, Erasmus MC, Rotterdam, The Netherlands.
Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.

Henriette A Moll (HA)

Department of Paediatrics, Erasmus MC, Rotterdam, The Netherlands.

Robert Kraaij (R)

Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. r.kraaij@erasmusmc.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH