An integrated biosensor platform for extraction and detection of nucleic acids.
biosensors
extraction
microfluidics
nucleic acids
qRT-PCR
silicon chip
Journal
Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
11
11
2019
revised:
21
01
2020
accepted:
28
01
2020
pubmed:
31
1
2020
medline:
13
7
2021
entrez:
31
1
2020
Statut:
ppublish
Résumé
The development of portable systems for analysis of nucleic acids (NAs) is crucial for the evolution of biosensing in the context of future healthcare technologies. The integration of NA extraction, purification, and detection modules, properly actuated by microfluidics technologies, is a key point for the development of portable diagnostic systems. In this paper, we describe an integrated biosensor platform based on a silicon-plastic hybrid lab-on-disk technology capable of managing NA extraction, purification, and detection processes in an integrated format. The sample preparation process is performed by solid-phase extraction technology using magnetic beads on a plastic disk, while detection is done through quantitative real-time polymerase chain reaction (qRT-PCR) on a miniaturized silicon device. The movement of sample and reagents is actuated by a centrifugal force induced by a disk actuator instrument. The assessment of the NA extraction and detection performance has been carried out by using hepatitis B virus (HBV) DNA genome as a biological target. The quantification of the qRT-PCR chip in the hybrid disk showed an improvement in sensitivity with respect to the qRT-PCR commercial platforms, which means an optimization of time and cost. Limit of detection and limit of quantification values of about 8 cps/reaction and 26 cps/reaction, respectively, were found by using analytical samples (synthetic clone), while the results with real samples (serum with spiked HBV genome) indicate that the system performs as well as the standard methods.
Substances chimiques
DNA, Viral
0
Nucleic Acids
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1554-1561Subventions
Organisme : MIUR
ID : CTN01_00177_817708
Pays : International
Informations de copyright
© 2020 Wiley Periodicals, Inc.
Références
Berensmeier, S. (2006). Magnetic particles for the separation and purification of nucleic acids. Applied Microbiology and Biotechnology, 3, 495-504. https://doi.org/10.1007/s00253-006-0675-0
Callari, F. L., Petralia, S., Conoci, S., & Sortino, S. (2008). Light-triggered DNA release by dynamic monolayer films. New Journal of Chemistry, 32, 1899-1903. https://doi.org/10.1039/B808118B
Chin, C., Linder, V., & Sia, S. (2012). Commercialization of microfluidic point-of-care diagnostic devices. Lab on a Chip, 12, 2118-2134. https://doi.org/10.1039/c2lc21204h
Fernández-Carballo, B. L., McGuiness, I., McBeth, C., Kalashnikov, M., Borrós, S., Sharon, A., & Sauer-Budge, A. F. (2016). Low-cost, real-time, continuous flow PCR system for pathogen detection. Biomedical Microdevices, 18, 34-40. https://doi.org/10.1007/s10544-016-0060-4
Guarnaccia, M., Gentile, G., Alessi, E., Scheider, C., Petralia, S., & Cavallaro, S. (2014). Is this the real time for genomics? Genomics, 103, 177-182. https://doi.org/10.1016/j.ygeno.2014.02.003
Gilmore, J., Islam, M., & Martinez-Duarte, R. (2016). Challenges in the use of compact disc-based centrifugal microfluidics for healthcare diagnostics at the extreme point of care. Micromachines, 7, 52. https://doi.org/10.3390/mi7040052
Guarnaccia, M., Iemmolo, R., Petralia, S., Conoci, S., & Cavallaro, S. (2017). Miniaturized real-time PCR on a Q3 system for rapid KRAS genotyping. Sensors, 17, 831. https://doi.org/10.3390/s17040831
Hsieh, K., Ferguson, B. S., Eisenstein, M., Plaxco, K. W., & Soh, H. T. (2015). Integrated electrochemical microsystems for genetic detection of pathogens at the point of care. Accounts of Chemical Research, 48, 911-920. https://doi.org/10.1021/ar500456w
Haeberle, S., & Zengerle, R. (2007). Microfluidic platforms for lab-on-a-chip applications. Lab on a Chip, 7, 1094-1110. https://doi.org/10.1039/B706364B
Leonardi, A. A., Lo Faro, M. J., Petralia, S., Fazio, B., Musumeci, P., Conoci, S., … Priolo, F. (2018). Ultrasensitive label- and PCR-free genome detection based on cooperative hybridization of silicon nanowires optical biosensors. ACS Sensors, 3, 1690-1697. https://doi.org/10.1021/acssensors.8b00422
Mauk, M. G., Song, J., Liu, C., & Bau, H. H. (2018). Simple approaches to minimally-instrumented, microfluidic-based point-of-care nucleic acid amplification tests. Biosensors, 8, 1-30. https://doi.org/10.3390/bios8010017
MagaZorb DNA Mini-Prep Kit Technical Bulletin. Instructions for Use of Product(s), MB1004; 2011; https://www.promega.com
Mark, D., Haeberle, S., Roth, G., von Stettenza, F., & Zengerlez, R. (2010). Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chemical Society Reviews, 39, 1153-1182. https://doi.org/10.1039/b820557b. and reference therein.
Mabey, D., Peeling, R. W., Ustianowski, A., & Perkins, M. D. (2004). Diagnostics for the developing world. Nature Reviews Microbiology, 2, 231-240. https://doi.org/10.1038/nrmicro841
Petralia, S., & Conoci, S. (2017). PCR technologies for point of care testing: Progress and perspectives. ACS Sensors, 2, 876-891. https://doi.org/10.1021/acssensors.7b00299
Petralia, S., Verardo, R., Klaric, E., Cavallaro, S., Alessi, E., & Schneider, C. (2013). In-Check system: A highly integrated silicon Lab-on-Chip for sample preparation, PCR amplification and microarray detection of nucleic acids directly from biological samples. Sensors and Actuators B: Chemical, 187, 99-105. https://doi.org/10.1016/j.snb.2012.09.068
Petralia, S., Sciuto, E. L., & Conoci, S. (2017). A novel miniaturized biofilter based on silicon micropillars for nucleic acid extraction. Analyst, 142, 140-146. https://doi.org/10.1039/C6AN02049F
Petralia, S., Motta, D., & Conoci, S. (2019). EWOD silicon biosensor for multiple nucleic acids analysis. Biotechnology and Bioengineering, 116, 2087-2094. https://doi.org/10.1002/bit.26987
Petralia, S., Castagna, M. E., Cappello, E., Puntoriero, F., Trovato, E., Gagliano, A., & Conoci, S. (2015). A miniaturized silicon based device for nucleic acids electrochemical detection. Sensing and Bio-Sensing Research, 6, 90-94. https://doi.org/10.1016/j.sbsr.2015.09.006
Petralia, S., Sciuto, E. L., Di Pietro, M. L., Zimbone, M., Grimaldi, M. G., & Conoci, S. (2017). Innovative chemical strategy for PCR-free genetic detection of pathogens by an integrated electrochemical biosensor. Analyst, 142, 2090-2293. https://doi.org/10.1039/c7an00202e
Quake, S. R., & Scherer, A. (2000). From micro- to nanofabrication with soft materials. Science, 290, 1536-1540. https://doi.org/10.1126/science.290.5496.1536
Quail, M., Smith, M. E., Coupland, P., Otto, T. D., Harris, S. R., Connor, T. R., … Gu, Y. (2012). A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 13, 341. https://doi.org/10.1186/1471-2164-13-341
Sortino, S., Petralia, S., Condorelli, G. G., Conoci, S., & Condorelli, G. (2003). A novel photoactive self-assembled monolayer for immobilization and cleavage of DNA. Langmuir, 19, 536-539. https://doi.org/10.1039/C0JM04359A
Smith, S., Mager, D., Perebikovsky, A., Shamloo, E., Kinahan, D., Mishra, R., … Korvink, J. G. (2016). CD-based microfluidics for primary care in extreme point-of-care settings. Micromachines, 7, 22. https://doi.org/10.3390/mi7020022
Spata, M. O., Castagna, M. E., & Conoci, S. (2015). Image data analysis in qPCR: A method for smart analysis of DNA amplification. Sensing and Bio-Sensing Research, 6, 79-84. https://doi.org/10.1016/j.sbsr.2015.10.006
Shabir, G. A. (2003). Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization. Journal of Chromatography, 987, 57-66. https://doi.org/10.1016/S0021-9673(02)01536-4
Thorsen, T., Maerkl, S. J., & Quake, S. R. (2002). Microfluidic large-scale integration. Science, 298, 580-584. https://doi.org/10.1126/science.1076996
Tong, R., Zhang, L., Hu, C., Chen, X., Song, Q., Lou, K., … Wen, W. (2019). An automated and miniaturized rotating-disk device for rapid nucleic acid extraction. Micromachines, 10, 204. https://doi.org/10.3390/mi10030204
Valli, L., Casilli, S., Giotta, L., Pignataro, B., Conoci, S., Borovkov, V. V., … Sortino, S. (2006). Ethane-bridged zinc porphyrin dimers in Langmuir-Shäfer thin films: Structural and spectroscopic properties. Journal of Physical Chemistry B, 110(10), 4691-4698. https://doi.org/10.1021/jp054974v
Yager, P., Domingo, G. J., & Gerdes, J. (2008). Point-of-care diagnostics for global health. Annual Review of Biomedical Engineering, 10, 107-144. https://doi.org/10.1146/annurev.bioeng.10.061807.160524
Zerhouni, O., Tarantino, M.-G., Danas, K., & Hong, F. (2018). Influence of the internal geometry on the elastic properties of materials using 3D-printing of computer-generated random microstructures. SEG International Exposition and Annual Meeting, SEG 2018. Retrieved from https://doi.org/10.1190/segam2018-2998182.1