Low-temperature tolerance of the Antarctic species Deschampsia antarctica: A complex metabolic response associated with nutrient remobilization.


Journal

Plant, cell & environment
ISSN: 1365-3040
Titre abrégé: Plant Cell Environ
Pays: United States
ID NLM: 9309004

Informations de publication

Date de publication:
06 2020
Historique:
received: 30 07 2019
revised: 19 01 2020
accepted: 21 01 2020
pubmed: 6 2 2020
medline: 29 1 2021
entrez: 4 2 2020
Statut: ppublish

Résumé

The species Deschampsia antarctica (DA) is one of the only two native vascular species that live in Antarctica. We performed ecophysiological, biochemical, and metabolomic studies to investigate the responses of DA to low temperature. In parallel, we assessed the responses in a non-Antarctic reference species (Triticum aestivum [TA]) from the same family (Poaceae). At low temperature (4°C), both species showed lower photosynthetic rates (reductions were 70% and 80% for DA and TA, respectively) and symptoms of oxidative stress but opposite responses of antioxidant enzymes (peroxidases and catalase). We employed fused least absolute shrinkage and selection operator statistical modelling to associate the species-dependent physiological and antioxidant responses to primary metabolism. Model results for DA indicated associations with osmoprotection, cell wall remodelling, membrane stabilization, and antioxidant secondary metabolism (synthesis of flavonols and phenylpropanoids), coordinated with nutrient mobilization from source to sink tissues (confirmed by elemental analysis), which were not observed in TA. The metabolic behaviour of DA, with significant changes in particular metabolites, was compared with a newly compiled multispecies dataset showing a general accumulation of metabolites in response to low temperatures. Altogether, the responses displayed by DA suggest a compromise between catabolism and maintenance of leaf functionality.

Identifiants

pubmed: 32012308
doi: 10.1111/pce.13737
doi:

Substances chimiques

Antioxidants 0
Phosphorus 27YLU75U4W
Sulfur 70FD1KFU70
Carbon 7440-44-0
Ascorbate Peroxidases EC 1.11.1.11
Catalase EC 1.11.1.6
Glutathione GAN16C9B8O
Nitrogen N762921K75

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1376-1393

Informations de copyright

© 2020 John Wiley & Sons Ltd.

Références

de Abreu e Lima, F., Westhues, M., Cuadros-Inostroza, Á., Willmitzer, L., Melchinger, A. E., & Nikoloski, Z. (2017). Metabolic robustness in young roots underpins a predictive model of maize hybrid performance in the field. Plant Journal, 90, 319-329.
Angelcheva, L., Mishra, Y., Antti, H., Kjellsen, T. D., Funk, C., Richard, G., & Schr, W. P. (2014). Metabolomic analysis of extreme freezing tolerance in Siberian spruce (Picea obovata). The New Phytologist, 204(3), 545-555.
Angiel, P. J., Potocki, M., & Biszczuk-Jakubowska, J. (2010). Weather condition characteristics at the H. Arctowski Station (South Shetlands, Antarctica) for 2006, in comparison with multi-year research results. Miscellanea Geographica, 14, 79-89.
Avila-Ospina, L., Moison, M., Yoshimoto, K., & Masclaux-Daubresse, C. (2014). Autophagy, plant senescence, and nutrient recycling. Journal of Experimental Botany, 65, 3799-3811.
Baek, K. H., & Skinner, D. Z. (2003). Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Science, 165, 1221-1227.
Bargagli, R. (2005). Antarctica: Geomorphology and climate trends. Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact, 1-41.
Bocian, A., Zwierzykowski, Z., Rapacz, M., Koczyk, G., Ciesiołka, D., & Kosmala, A. (2015). Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance. Journal of Applied Genetics, 56, 439-449.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254.
Bramley-Alves J., King D.H., Robinson S.A. & Miller R.E. (2014) Dominating the Antarctic environment: Bryophytes in a time of change. pp. 309-324. Springer, Dordrecht.
Bravo, L. A., & Griffith, M. (2005). Characterization of antifreeze activity in Antarctic plants. Journal of Experimental Botany, 56, 1189-1196.
Bravo, L. A., Ulloa, N., Zuñiga, G. E., Casanova, A., Corcuera, L. J., & Alberdi, M. (2001). Cold resistance in Antarctic angiosperms. Physiologia Plantarum, 111, 55-65.
Burgos, A., Szymanski, J., Seiwert, B., Degenkolbe, T., Hannah, M. A., Giavalisco, P., & Willmitzer, L. (2011). Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light. The Plant Journal, 66(4), 656-668.
von Caemmerer, S., & Evans, J. R. (2014). Temperature responses of mesophyll conductance differ greatly between species. Plant, Cell & Environment, 38(4), 629-637.
Cakmak, I., & Horst, W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiologia Plantarum, 83, 463-468.
Caldana, C., Degenkolbe, T., Cuadros-Inostroza, A., Klie, S., Sulpice, R., Leisse, A., … Hannah, M. A. (2011). High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant Journal, 67, 869-884.
Cavieres, L. A., Sáez, P., Sanhueza, C., Sierra-Almeida, A., Rabert, C., Corcuera, L. J., … Bravo, L. A. (2016). Ecophysiological traits of Antarctic vascular plants: Their importance in the responses to climate change. Plant Ecology, 217, 343-358.
Clemente-Moreno, M. J., Díaz-Vivancos, P., Rubio, M., Fernández-García, N., & Hernández, J. A. (2013). Chloroplast protection in plum pox virus-infected peach plants by l-2-oxo-4-thiazolidine-carboxylic acid treatments: Effect in the proteome. Plant, Cell and Environment, 36, 640-654.
Clemente-Moreno, M. J., Gago, J., Pedro, D.-V., Bernal, A., Miedes, E., Bresta, P., … Flexas, J. (2019). The apoplastic antioxidant system and altered cell wall dynamics influence mesophyll conductance and the rate of photosynthesis. The Plant Journal, 99(6), 1031-1046.
Clemente-Moreno M.J.*, Omranian N.*, Sáez P., Figueroa C.M., Del-Saz N., Elso M., Poblete L., Orf I., Cuadros-Inostroza A., Cavieres L., Bravo L., Fernie A.R., Ribas-Carbó M., Flexas J., Nikoloski Z., Brotman Y., Gago J (2019) High cytochromic respiratory rates and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis. New Phytologist, 225, 754-768. https://doi.org/10.1111/nph.16167.
Colledge, S., Conolly, J., & Shennan, S. (2004). Archaeobotanical evidence for the spread of farming in the eastern Mediterranean. Current Anthropology, 45, S35-S58.
Convey, P. (2013). Antarctic ecosystems. In S. A. Levin (Ed.), Encyclopedia of biodiversity (2nd ed., pp. 179-188). San Diego: Elsevier.
Convey, P., Coulson, S. J., Worland, M. R., & Sjöblom, A. (2018). The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biology, 41, 1587-1605.
Cook, D., Fowler, S., Fiehn, O., & Thomashow, M. F. (2004). From the cover: A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences, 101, 15243-15248.
Cuadros-Inostroza, A., Caldana, C., Redestig, H., Kusano, M., Lisec, J., Peña-Cortés, H., … Hannah, M. A. (2009). TargetSearch-A bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinformatics, 10, 1-12.
Deepayan, S. (2008). Lattice: multivariate data visualization with R. Book Lattice: Multivariate Data Visualisation with R, 1.
Díaz-Vivancos, P., Clemente-Moreno, M. J., Rubio, M., Olmos, E., García, J. A., Martínez-Gómez, P. & Hernández, J. A. (2008). Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to Plum pox virus. Journal of Experimental Botany, 59, 2147-2160.
Díaz-Vivancos, P., Rubio, M., Mesonero, V., Periago, P. M., Ros-Barceló, A., Martínez-Gómez, P. & Hernández, J. A. (2006). The apoplastic antioxidant system in Prunus: response to plum poxvirus. Journal of Experimental Botany, 57, 3813-3824.
Distelbarth, H., Nägele, T., & Heyer, A. G. (2013). Responses of antioxidant enzymes to cold and high light are not correlated to freezing tolerance in natural accessions of Arabidopsis thaliana. Plant Biology, 15, 982-990.
Distelfeld, A., Avni, R., & Fischer, A. M. (2014). Senescence, nutrient remobilization, and yield in wheat and barley. Journal of Experimental Botany, 65, 3783-3798.
Edwards, J. A., & Smith, R. I. (1988). Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the maritime Antarctic. British Antarctic Survey Bulletin, 81, 43-63.
Farquhar, G. D., Von, C. S., & Berry, J. A. (1980). A biochemical model of photosynthetic. Planta, 149, 78-90.
Flexas, J., Barbour, M. M., Brendel, O., Cabrera, H. M., Carriquí, M., Díaz-Espejo, A., … Warren, C. R. (2012). Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. Plant Science, 193-194, 70-84.
Flexas, J., Díaz-Espejo, A., Berry, J. A., Cifre, J., Galmés, J., Kaldenhoff, R., …, Ribas-Carbó, M. (2007). Analysis of leakage in IRGA's leaf chambers of open gas exchange systems: quantification and its effects in photosynthesis parameterization. Journal of experimental botany, 58, 1533-1543.
Flexas, J., & Gago, J. (2018). A role for ecophysiology in the'omics' era. The Plant Journal, 96(2), 251-259.
Gago, J., Daloso, D. M., Figueroa, C. M., Flexas, J., Fernie, A. R., & Nikoloski, Z. (2016). Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: A multispecies meta-analysis approach. Plant Physiology, 171(1), 265-279.
Gago, J., Fernie, A. R., Nikoloski, Z., Tohge, T., Martorell, S., Escalona, J. M., …, Medrano, H. (2017). Integrativefield scale phenotyping for investigating metabolic components of water stresswithin a vineyard. Plant Methods, 13, 90. https://doi.org/10.1186/s13007-017-0241-z
Gidekel, M., Destefano-Beltrán, L., García, P., Mujica, L., Leal, P., Cuba, M., … Gutiérrez, A. (2003). Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica Desv. Extremophiles, 7, 459-469.
Goel, P., & Singh, A. K. (2015). Abiotic stresses downregulate key genes involved in nitrogen uptake and assimilation in Brassica juncea L. PLoS One, 10, 1-17.
Grassi, G, & Magnani, F. (2005). Stomatal mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell and Environment, 28, 834-849.
Greene, D. M., & Holtom, A. (1971). Studies in Colobanthus quitensis (Kunth) Bartl. a Deschampsia Antarctica Desv.: III. Distribution, habitats and performance in the Antarctic botanical zone. British Antarctic Survey Bulletin, 26, 1-29.
Gregersen, P. L., Culetic, A., Boschian, L., & Krupinska, K. (2013). Plant senescence and crop productivity. Plant Molecular Biology, 82, 603-622.
Harley, P. C., Loreto, F., Di Marco, G., & Sharkey, T. D. (1992). Theoretical Considerations when Estimating the Mesophyll Conductance to CO2 Flux by Analysis of the Response of Photosynthesis to CO2. Plantphysiology, 98, 1429-1436.
Hermida-Carrera, C., Kapralov, M. V., & Galmés, J. (2016). Rubisco catalytic properties and temperature response in crops. Plant Physiology, 171, 2549-2561.
Hoermiller, I. I., Naegele, T., Augustin, H., Stutz, S., Weckwerth, W., & Heyer, A. G. (2017). Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana. Plant Cell and Environment, 40, 602-610.
Klotke, J., Kopka, J., Gatzke, N., & Heyer, A. G. (2004). Impact of soluble sugar concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation-Evidence for a role of raffinose in cold acclimation. Plant, Cell and Environment, 27, 1395-1404.
Labarrere, B., Prinzing, A., Dorey, T., Chesneau, E., & Hennion, F. (2019). Variations of secondary metabolites among natural populations of sub-Antarctic Ranunculus species suggest functional redundancy and versatility. Plants, 8, 234.
Lam, K. Y., Westrick, Z. M., Müller, C. L., Christiaen, L., & Bonneau, R. (2016). Fused regression for multi-source gene regulatory network inference. PLoS Computational Biology, 12, e1005157.
Leple, J.-C., Dauwe, R., Morreel, K., Storme, V., Lapierre, C., Pollet, B., … Boerjan, W. (2007). Downregulation of cinnamoyl-coenzyme A reductase in poplar: Multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. The Plant Cell Online, 19, 3669-3691.
Li, Z., Omranian, N., Neumetzler, L., Wang, T., Herter, T., Usadel, B., … Persson, S. (2016). A transcriptional and metabolic framework for secondary wall formation in Arabidopsis. Plant Physiology, 172, 1334-1351.
Lima, V. F., Medeiros, D. B., Souza, L. P., Gago, J., Fernie, A. R., & Daloso, D. M. (2019). The sucrose-to-malate ratio correlates with the faster CO2 and light stomatal responses of angiosperms compared to ferns. New Phytologist, 223(4), 1873-1887.
Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Natureprotocols, 1, 387-396.
Moore, D. M. (1970). Studies in Colobanthus Quitensis (Kunth) Bartl. and Deschampsia Antarctica Desv: Taxonomy, Distribution and Relationships. II.
Niinemets, U., Cescatti, A., Rodeghiero, M., & Tosens, T. (2005). Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreenbroad-leaved species. Plant, Cell and Environment, 28, 1552-1566.
Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular life Sciences, 69, 3225-3243.
Omranian, N., Eloundou-Mbebi, J. M. O., Mueller-Roeber, B., & Nikoloski, Z. (2016). Gene regulatory network inference using fused LASSO on multiple data sets. Scientific Reports, 6, 20533.
Ort, D. R., Merchant, S. S., Alric, J., Barkan, A., Blankenship, R. E., Bock, R., … Zhu, X. G. (2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceedings of the National Academy of Sciences of the United States of America, 112, 8529-8536.
Perdomo, J. A., Carmo-Silva, E., Hermida-Carrera, C., Flexas, J., & Galmés, J. (2016). Acclimation of biochemical and diffusive components of photosynthesis in rice, wheat, and maize to heat and water deficit: Implications for modeling photosynthesis. Frontiers in Plant Science, 7, 1-16.
Pérez-Torres, E., Bravo, L. A., Corcuera, L. J., & Johnson, G. N. (2007). Is electron transport to oxygen an important mechanism in photoprotection? Contrasting responses from Antarctic vascular plants. Physiologia Plantarum, 130, 185-194.
Pérez-Torres, E., Dinamarca, J., Bravo, L. a., & Corcuera, L. J. (2004). Responses of Colobanthus quitensis (Kunth) Bartl. to high light and low temperature. Polar Biology, 27, 183-189.
Pérez-Torres, E., García, A., Dinamarca, J., Alberdi, M., Gutiérrez, A., Gidekel, M., … Bravo, L. A. (2004). The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Functional Plant Biology, 31, 731-741.
Ravanel, S., Gakiere, B., Job, D., & Douce, R. (1998). The specific features of methionine biosynthesis and metabolism in plants. Proceedings of the National Academy of Sciences, 95, 7805-7812.
Renault, H., Roussel, V., El Amrani, A., Arzel, M., Renault, D., Bouchereau, A., & Deleu, C. (2010). The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biology, 10, 1-16.
Sáez, P. L., Bravo, L. A., Cavieres, L. A., Vallejos, V., Sanhueza, C., Font-Carrascosa, M., … Galmés, J. (2017). Photosynthetic limitations in two Antarctic vascular plants: Importance of leaf anatomical traits and Rubisco kinetic parameters. Journal of Experimental Botany, 68, 2871-2883.
Sáez, P. L., Cavieres, L. A., Galmés, J., Gil-Pelegrín, E., Peguero-Pina, J. J., Sancho-Knapik, D., … Corcuera, L. J. (2018). In situ warming in the Antarctic: Effects on growth and photosynthesis in Antarctic vascular plants. New Phytologist, 218(4), 1406-1418.
Sáez, P. L., Galmés, J., Ramirez, C. F., Poblete, L., Rivera, B. K., Cavieres, L. A., … Bravo, L. A. (2018). Mesophyll conductance to CO2 is the most significant limitation to photosynthesis at different temperatures and water availabilities in Antarctic vascular species. Environmental and Experimental Botany, 156, 279-287.
Sierra-Almeida, A., Casanova-Katny, M. A., Bravo, L. A., Corcuera, L. J., & Cavieres, L. A. (2007). Photosynthetic responses to temperature and light of Antarctic and Andean populations of Colobanthus quitensis (Caryophyllaceae). Revista Chilena de Historia Natural, 80(3), 335-343.
Sierra-Almeida, A., Cavieres, L. A., & Bravo, L. A. (2018). Warmer temperatures affect the in situ freezing resistance of the Antarctic vascular plants. Frontiers in Plant Science, 9, 1456.
Slewinski, T. (2012). Non-structural carbohydrate partitioning in grass stems: A target to increase yield stability, stress tolerance, and biofuel production. Journal of Experimental Botany, 63, 4647-4670.
Stacklies, W., Redestig, H., Scholz, M., Walther, D., & Selbig, J. (2007). pcaMethods-A bioconductor package providing PCA methods for incomplete data. Bioinformatics, 23, 1164-1167.
Swanson, S., & Gilroy, S. (2010). ROS in plant development. Physiologia Plantarum, 138, 384-392.
Tenhaken, R. (2015). Cell wall remodeling under abiotic stress. Frontiers in Plant Science, 5, 1-9.
Teow, C. C., Den, T. V., McFeeters, R. F., Thompson, R. L., Pecota, K. V., & Yencho, G. C. (2007). Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chemistry, 103, 829-838.
Tomás, M., Flexas, J., Copolovici, L., Galmés, J., Hallik, L., Medrano, H., … Niinemets, Ü. (2013). Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: Quantitative limitations and scaling up by models. Journal of Experimental Botany, 64, 2269-2281.
Tosens, T., Nishida, K., Gago, J., Coopman, R. E., Cabrera, H. M., Carriquí, M., … Flexas, J. (2016). The photosynthetic capacity in 35 ferns and fern allies: Mesophyll CO2 diffusion as a key trait. New Phytologist, 209(4), 1576-1590.
Valentini, R., Epron, D., De Angelis, P., Matteucci, G., & Dreyer, E. (1995). In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant, Cell & Environment, 18(6), 631-640.
Van den Ende, W. (2013). Multifunctional fructans and raffinose family oligosaccharides. Frontiers in Plant Science, 4, 247.
Von Caemmerer, S. (2000). Biochemical models of leaf photosynthesis. Csiro publishing.
Warren, C. R. (2008). Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not. Journal of Experimental Botany, 59, 327-334.
Warren, C. R., & Dreyer, E. (2006). Temperature response of photosynthesis and internal conductance to CO2: Results from two independent approaches. Journal of Experimental Botany, 57, 3057-3067.
Watanabe, M., Balazadeh, S., Tohge, T., Erban, A., Giavalisco, P., Kopka, J., … Hoefgen, R. (2013). Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiology, 162, 1290-1310.
Wen, W., Li, K., Alseek, S., Omranian, N., Zhao, L., Zhou, Y., … Fernie, A. R. (2015). Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population. The Plant Cell, 27(7), 1839-1856.
Wu, Z., Jiang, W., Chen, S., Mantri, N., & Tao, Z. (2016). Insights from the cold transcriptome and metabolome of Dendrobium officinale: Global reprogramming of metabolic and gene regulation networks during cold acclimation. Frontiers in Plant Science, 7, 1-16.
Xiong, D., Liu, X., Liu, L., Douthe, C., Li, Y., Peng, S., & Huang, J. (2015). Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant Cell and Environment, 38, 2541-2550.
Xiong, F. S., Ruhland, C. T., & Day, T. A. (1999). Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica. Physiologia Plantarum, 106, 276-286.
Yamori, W., Hikosaka, K., & Way, D. A. (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynthesis Research, 119, 101-117.
Yamori, W., Suzuki, K., Noguchi, K., Nakai, M., & Terashima, I. (2006). Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant, Cell and Environment, 29, 1659-1670.
Zhang, J., & Kirkham, M. B. (1996). Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants. Plant Science, 113, 139-147.
Zhang, J., Luo, W., Zhao, Y., Xu, Y., Song, S., & Chong, K. (2016). Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice. New Phytology, 211(4), 1295-1310.
Zhou, J., Wang, J., Shi, K., Xia, X. J., Zhou, Y. H., & Yu, J. Q. (2012). Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiology and Biochemistry, 60, 141-149.

Auteurs

María José Clemente-Moreno (MJ)

Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), Palma de Mallorca, Spain.

Nooshin Omranian (N)

Systems Biology and Mathematical Modeling Group, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Germany.
Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.

Patricia L Sáez (PL)

Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile.

Carlos María Figueroa (CM)

Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina.

Néstor Del-Saz (N)

Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile.

Mhartyn Elso (M)

Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile.

Leticia Poblete (L)

Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile.

Isabel Orf (I)

Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.

Alvaro Cuadros-Inostroza (A)

Metasysx GmbH, Potsdam, Germany.

Lohengrin A Cavieres (LA)

ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción and Instituto de Ecología y Biodiversidad-IEB, Concepción, Chile.

León Bravo (L)

Lab. de Fisiología y Biología Molecular Vegetal, Dpt. de Cs. Agronómicas y Recursos Naturales, Facultad de Cs. Agropecuarias y Forestales, Instituto de Agroindustria, & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.

Alisdair R Fernie (AR)

Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany.

Miquel Ribas-Carbó (M)

Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), Palma de Mallorca, Spain.

Jaume Flexas (J)

Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), Palma de Mallorca, Spain.

Zoran Nikoloski (Z)

Systems Biology and Mathematical Modeling Group, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Germany.
Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.
Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria.

Yariv Brotman (Y)

Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.

Jorge Gago (J)

Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), Palma de Mallorca, Spain.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Populus Soil Microbiology Soil Microbiota Fungi
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH