Between roost contact is essential for maintenance of European bat lyssavirus type-2 in Myotis daubentonii bat reservoir: 'The Swarming Hypothesis'.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
03 02 2020
Historique:
received: 23 04 2018
accepted: 08 01 2020
entrez: 5 2 2020
pubmed: 6 2 2020
medline: 13 11 2020
Statut: epublish

Résumé

Many high-consequence human and animal pathogens persist in wildlife reservoirs. An understanding of the dynamics of these pathogens in their reservoir hosts is crucial to inform the risk of spill-over events, yet our understanding of these dynamics is frequently insufficient. Viral persistence in a wild bat population was investigated by combining empirical data and in-silico analyses to test hypotheses on mechanisms for viral persistence. A fatal zoonotic virus, European Bat lyssavirus type 2 (EBLV-2), in Daubenton's bats (Myotis daubentonii) was used as a model system. A total of 1839 M. daubentonii were sampled for evidence of virus exposure and excretion during a prospective nine year serial cross-sectional survey. Multivariable statistical models demonstrated age-related differences in seroprevalence, with significant variation in seropositivity over time and among roosts. An Approximate Bayesian Computation approach was used to model the infection dynamics incorporating the known host ecology. The results demonstrate that EBLV-2 is endemic in the study population, and suggest that mixing between roosts during seasonal swarming events is necessary to maintain EBLV-2 in the population. These findings contribute to understanding how bat viruses can persist despite low prevalence of infection, and why infection is constrained to certain bat species in multispecies roosts and ecosystems.

Identifiants

pubmed: 32015375
doi: 10.1038/s41598-020-58521-6
pii: 10.1038/s41598-020-58521-6
pmc: PMC6997190
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1740

Références

Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. & Schountz, T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19, 531–545, doi:19/3/531 (2006).
Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proceedings. Biol. sciences/R. Soc. 280, 20122753, https://doi.org/10.1098/rspb.2012.2753 (2013).
doi: 10.1098/rspb.2012.2753
Plowright, R. K. et al. Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations. PLoS neglected tropical Dis. 10, e0004796, https://doi.org/10.1371/journal.pntd.0004796 (2016).
doi: 10.1371/journal.pntd.0004796
ICTV. ICTV Online 9th Report, https://talk.ictvonline.org/ictv-reports/ictv_online_report/negative-sense-rna-viruses/ (2011).
Fooks, A. R. et al. Current status of rabies and prospects for elimination. Lancet, https://doi.org/10.1016/S0140-6736(13)62707-5 (2014).
doi: 10.1016/S0140-6736(13)62707-5
Dyer, J. L. et al. Rabies surveillance in the United States during 2013. J. Am. Vet. Med. Assoc. 245, 1111–1123, https://doi.org/10.2460/javma.245.10.1111 (2014).
doi: 10.2460/javma.245.10.1111 pubmed: 25356711 pmcid: 5120391
Monroe, B. P. et al. Rabies surveillance in the United States during 2014. J. Am. Vet. Med. Assoc. 248, 777–788, https://doi.org/10.2460/javma.248.7.777 (2016).
doi: 10.2460/javma.248.7.777 pubmed: 27003019
Nolden, T. et al. Comparative studies on the genetic, antigenic and pathogenic characteristics of Bokeloh bat lyssavirus. J. Gen. Virol. 95, 1647–1653 (2014).
doi: 10.1099/vir.0.065953-0
Evans, J. S., Horton, D. L., Easton, A. J., Fooks, A. R. & Banyard, A. C. Rabies virus vaccines: Is there a need for a pan-lyssavirus vaccine? Vaccine 30, 7447–7454, https://doi.org/10.1016/j.vaccine.2012.10.015 (2012).
doi: 10.1016/j.vaccine.2012.10.015 pubmed: 23084854
Constantine, D. G. An updated list of rabies-infected bats in North America. J. Wildl. Dis. 15, 347–349 (1979).
doi: 10.7589/0090-3558-15.2.347
George, D. B. et al. Host and viral ecology determine bat rabies seasonality and maintenance. Proc. Natl Acad. Sci. USA 108, 10208–10213, https://doi.org/10.1073/pnas.1010875108 (2011).
doi: 10.1073/pnas.1010875108 pubmed: 21646516
Sadler, W. W. & Enright, J. B. Effect of metabolic level of the host upon the pathogenesis of rabies in the bat. J. Infect. Dis. 105, 267–273 (1959).
doi: 10.1093/infdis/105.3.267
Sulkin, S. E., Allen, R., Sims, R., Krutzsch, P. H. & Kim, C. Studies on the Pathogenesis of Rabies in Insectivorous Bats: Ii. Influence of Environmental Temperature. J. Exp. Med. 112, 595–617 (1960).
doi: 10.1084/jem.112.4.595
Schatz, J. et al. Bat Rabies Surveillance in Europe. Zoonoses public. health 60, 22–34, https://doi.org/10.1111/zph.12002 (2013).
doi: 10.1111/zph.12002 pubmed: 22963584
Lopez-Roig, M., Bourhy, H., Lavenir, R. & Serra-Cobo, J. Seroprevalence dynamics of European bat lyssavirus type 1 in a multispecies bat colony. Viruses 6, 3386–3399, https://doi.org/10.3390/v6093386 (2014).
doi: 10.3390/v6093386 pubmed: 25192547 pmcid: 4189026
Serra-Cobo, J. et al. Ecological factors associated with European bat lyssavirus seroprevalence in spanish bats. PLoS one 8, e64467, https://doi.org/10.1371/journal.pone.0064467 (2013).
doi: 10.1371/journal.pone.0064467 pubmed: 23700480 pmcid: 3659107
Amengual, B., Bourhy, H., Lopez-Roig, M. & Serra-Cobo, J. Temporal dynamics of European bat Lyssavirus type 1 and survival of Myotis myotis bats in natural colonies. PLoS One 2, e566, https://doi.org/10.1371/journal.pone.0000566 (2007).
doi: 10.1371/journal.pone.0000566 pubmed: 17593965 pmcid: 1892799
Pons-Salort, M. et al. Insights into persistence mechanisms of a zoonotic virus in bat colonies using a multispecies metapopulation model. PLoS one 9, e95610, https://doi.org/10.1371/journal.pone.0095610 (2014).
doi: 10.1371/journal.pone.0095610 pubmed: 24755619 pmcid: 3995755
Colombi, D. et al. Mechanisms for European Bat Lyssavirus subtype 1 persistence in non-synanthropic bats: insights from a modeling study. bioRxiv (2018).
McElhinney, L. M. et al. Molecular epidemiology of bat lyssaviruses in europe. Zoonoses public. health 60, 35–45, https://doi.org/10.1111/zph.12003 (2013).
doi: 10.1111/zph.12003 pubmed: 22937876
Johnson, N. et al. Two EBLV-2 infected Daubenton’s bats detected in the north of England. Vet. Rec. 179, 311–312, https://doi.org/10.1136/vr.i5121 (2016).
doi: 10.1136/vr.i5121 pubmed: 27660356
McElhinney, L. M. et al. Molecular Epidemiology and Evolution of European Bat Lyssavirus 2. Int J Mol Sci 19, https://doi.org/10.3390/ijms19010156 (2018).
doi: 10.3390/ijms19010156
Bogdanowicz, W. Geographic Variation and Taxonomy of Daubenton’s Bat, Myotis daubentoni in Europe. J. Mammalogy 71, 205–218, https://doi.org/10.2307/1382169 (1990).
doi: 10.2307/1382169
Smith, G. C. et al. Bat population genetics and Lyssavirus presence in Great Britain. Epidemiol. Infect. 139, 1463–1469, https://doi.org/10.1017/S0950268810002876 (2011).
doi: 10.1017/S0950268810002876 pubmed: 21205436
August, T. A., Nunn, M. A., Fensome, A. G., Linton, D. M. & Mathews, F. Sympatric woodland Myotis bats form tight-knit social groups with exclusive roost home ranges. PLoS one 9, e112225, https://doi.org/10.1371/journal.pone.0112225 (2014).
doi: 10.1371/journal.pone.0112225 pubmed: 25356770 pmcid: 4214762
Senior, P., Butlin, R. K. & Altringham, J. D. Sex and segregation in temperate bats. Proceedings. Biol. sciences/R. Soc. 272, 2467–2473, https://doi.org/10.1098/rspb.2005.3237 (2005).
doi: 10.1098/rspb.2005.3237
Angell, R. L., Butlin, R. K. & Altringham, J. D. Sexual segregation and flexible mating patterns in temperate bats. PLoS one 8, e54194, https://doi.org/10.1371/journal.pone.0054194 (2013).
doi: 10.1371/journal.pone.0054194 pubmed: 23365652 pmcid: 3554751
Ngamprasertwong, T., Piertney, S. B., Mackie, I. & Racey, P. A. Roosting Habits of Daubenton’s Bat (Myotis daubentonii) during Reproduction Differs between Adjacent River Valleys. Acta Chiropterologica 16, 337–347, https://doi.org/10.3161/150811014X687297 (2014).
doi: 10.3161/150811014X687297
Rivers, N. M., Butlin, R. K. & Altringham, J. D. Genetic population structure of Natterer’s bats explained by mating at swarming sites and philopatry. Mol. Ecol. 14, 4299–4312, https://doi.org/10.1111/j.1365-294X.2005.02748.x (2005).
doi: 10.1111/j.1365-294X.2005.02748.x pubmed: 16313594
Parsons, K. N., Jones, G. & Greenaway, F. Swarming activity of temperate zone microchiropteran bats: effects of season, time of night and weather conditions. J. Zool. 261, 257–264, https://doi.org/10.1017/S0952836903004199 (2003).
doi: 10.1017/S0952836903004199
Lumio, J. et al. Human rabies of bat origin in Europe. Lancet 1, 378, doi:S0140-6736(86)92336-6 (1986).
Fooks, A. R. et al. Case report: isolation of a European bat lyssavirus type 2a from a fatal human case of rabies encephalitis. J. Med. Virol. 71, 281–289, https://doi.org/10.1002/jmv.10481 (2003).
doi: 10.1002/jmv.10481 pubmed: 12938204
Brookes, S. M. & Fooks, A. R. Occupational lyssavirus risks and post-vaccination monitoring. Dev. Biol. 125, 165–173 (2006).
Gilbert, A. T. et al. Deciphering serology to understand the ecology of infectious diseases in wildlife. Ecohealth 10, 298–313, https://doi.org/10.1007/s10393-013-0856-0 (2013).
doi: 10.1007/s10393-013-0856-0 pubmed: 23918033
Johnson, N. et al. Experimental study of European bat lyssavirus type-2 infection in Daubenton’s bats (Myotis daubentonii). J Gen Virol 89, 2662–2672, doi:89/11/2662 (2008).
Banyard, A. C. et al. Repeated detection of European bat lyssavirus type 2 in dead bats found at a single roost site in the UK. Arch. Virol. 154, 1847–1850, https://doi.org/10.1007/s00705-009-0504-8 (2009).
doi: 10.1007/s00705-009-0504-8 pubmed: 19841859
Johnson, N., Phillpotts, R. & Fooks, A. R. Airborne transmission of lyssaviruses. J Med Microbiol 55, 785-790, doi:55/6/785 (2006).
Davis, A. D., Rudd, R. J. & Bowen, R. A. Effects of aerosolized rabies virus exposure on bats and mice. The Journal of infectious diseases 195, 1144-1150, doi:JID37404 (2007).
Gilbert, A. T. et al. Evidence of rabies virus exposure among humans in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 87, 206–215, https://doi.org/10.4269/ajtmh.2012.11-0689 (2012).
doi: 10.4269/ajtmh.2012.11-0689 pubmed: 22855749 pmcid: 3414554
Grassly, N. C. & Fraser, C. Mathematical models of infectious disease transmission. Nat. reviews. Microbiology 6, 477–487, https://doi.org/10.1038/nrmicro1845 (2008).
doi: 10.1038/nrmicro1845 pubmed: 18533288
Toni, T., Jovanovic, G., Huvet, M., Buck, M. & Stumpf, M. P. From qualitative data to quantitative models: analysis of the phage shock protein stress response in Escherichia coli. BMC Syst. Biol. 5, 69, https://doi.org/10.1186/1752-0509-5-69 (2011).
doi: 10.1186/1752-0509-5-69 pubmed: 21569396 pmcid: 3127791
Streicker, D. G., Franka, R., Jackson, F. R. & Rupprecht, C. E. Anthropogenic roost switching and rabies virus dynamics in house-roosting big brown bats. Vector Borne Zoonotic Dis. 13, 498–504, https://doi.org/10.1089/vbz.2012.1113 (2013).
doi: 10.1089/vbz.2012.1113 pubmed: 23590325
Barrett, L. G., Thrall, P. H., Burdon, J. J. & Linde, C. C. Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends Ecol. Evol. 23, 678–685, https://doi.org/10.1016/j.tree.2008.06.017 (2008).
doi: 10.1016/j.tree.2008.06.017 pubmed: 18947899 pmcid: 2653456
Wise, E. L. et al. Passive surveillance of United Kingdom bats for lyssaviruses (2005–2015). Epidemiol. Infect. 145, 2445–2457, https://doi.org/10.1017/S0950268817001455 (2017).
doi: 10.1017/S0950268817001455 pubmed: 28737119
Jackson, A. C. Rabies: new insights into pathogenesis and treatment. Curr. Opin. Neurol. 19(267–270), 7 (2006).
Freuling, C. M. et al. Experimental infection of Serotine bats (Eptesicus serotinus) with European bat lyssavirus type 1a (EBLV-1a). J Gen Virol, doi:vir.0.011510-0 (2009).
Botvinkin, A. D., Kuz’min, I. V. & Chernov, S. M. [The experimental infection of bats with lyssavirus serotypes 1 and 4]. Vopr. Virusol. 37, 215–218 (1992).
pubmed: 1471342
Davis, A. D. et al. Overwintering of Rabies Virus in Silver Haired Bats (Lasionycteris noctivagans). PLoS one 11, e0155542, https://doi.org/10.1371/journal.pone.0155542 (2016).
doi: 10.1371/journal.pone.0155542 pubmed: 27195489 pmcid: 4873251
Canale, C. I., Perret, M. & Henry, P. Y. Torpor use during gestation and lactation in a primate. Naturwissenschaften 99, 159–163, https://doi.org/10.1007/s00114-011-0872-2 (2012).
doi: 10.1007/s00114-011-0872-2 pubmed: 22159593
Lilley, T. M. et al. Immune responses in hibernating little brown myotis (Myotis lucifugus) with white-nose syndrome. Proceedings. Biological sciences/The Royal Society 284, https://doi.org/10.1098/rspb.2016.2232 (2017).
doi: 10.1098/rspb.2016.2232
O’Shea, T. J. et al. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 20, 741–745, https://doi.org/10.3201/eid2005.130539 (2014).
doi: 10.3201/eid2005.130539 pubmed: 24750692 pmcid: 4012789
Glover, A. M. & Altringham, J. D. Cave selection and use by swarming bat species. Biol. Conserv. 141, 1493–1504, https://doi.org/10.1016/j.biocon.2008.03.012 (2008).
doi: 10.1016/j.biocon.2008.03.012
van Schaik, J. & Kerth, G. Host social organization and mating system shape parasite transmission opportunities in three European bat species. Parasitol. Res. 116, 589–599, https://doi.org/10.1007/s00436-016-5323-8 (2017).
doi: 10.1007/s00436-016-5323-8 pubmed: 27858154
Blackwood, J. C., Streicker, D. G., Altizer, S. & Rohani, P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc. Natl Acad. Sci. USA 110, 20837–20842, https://doi.org/10.1073/pnas.1308817110 (2013).
doi: 10.1073/pnas.1308817110 pubmed: 24297874
Streicker, D. G. et al. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc. Natl Acad. Sci. U S Am. 113, 10926–10931, https://doi.org/10.1073/pnas.1606587113 (2016).
doi: 10.1073/pnas.1606587113
Streicker, D. G. et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control. Proceedings. Biol. sciences/R. Soc. 279, 3384–3392, https://doi.org/10.1098/rspb.2012.0538 (2012).
doi: 10.1098/rspb.2012.0538
Begon, M. et al. A clarification of transmission terms in host-microparasite models: numbers, densities and areas. Epidemiol. Infect. 129, 147–153 (2002).
doi: 10.1017/S0950268802007148

Auteurs

Daniel L Horton (DL)

Animal and Plant Health Agency (Weybridge), Surrey, KT15 3NB, United Kingdom.
School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford, Surrey, GU2 7AL, United Kingdom.

Andrew C Breed (AC)

Animal and Plant Health Agency (Weybridge), Surrey, KT15 3NB, United Kingdom. a.breed@uq.edu.au.
School of Veterinary Science, University of Queensland, Brisbane, Australia. a.breed@uq.edu.au.
Epidemiology and One Health Section, Department of Agriculture, Water and Environment, Canberra, Australia. a.breed@uq.edu.au.

Mark E Arnold (ME)

Animal and Plant Health Agency (Weybridge), Surrey, KT15 3NB, United Kingdom.

Graham C Smith (GC)

National Wildlife Management Centre, Animal and Plant Health Agency, York, YO41 1LZ, United Kingdom.

James N Aegerter (JN)

National Wildlife Management Centre, Animal and Plant Health Agency, York, YO41 1LZ, United Kingdom.

Lorraine M McElhinney (LM)

Animal and Plant Health Agency (Weybridge), Surrey, KT15 3NB, United Kingdom.
Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.

Nick Johnson (N)

Animal and Plant Health Agency (Weybridge), Surrey, KT15 3NB, United Kingdom.
School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford, Surrey, GU2 7AL, United Kingdom.

Ashley C Banyard (AC)

Animal and Plant Health Agency (Weybridge), Surrey, KT15 3NB, United Kingdom.

Robert Raynor (R)

Scottish Natural Heritage, Great Gen House, Leachkin Road, Inverness, IV3 8NW, United Kingdom.

Iain Mackie (I)

Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.

Matthew J Denwood (MJ)

School of Veterinary Medicine, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, United Kingdom.

Dominic J Mellor (DJ)

School of Veterinary Medicine, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, United Kingdom.
Health Protection Scotland, Meridian Court, 5 Cadogan Street, Glasgow, G2 6QE, United Kingdom.

Sue Swift (S)

Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.

Paul A Racey (PA)

Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.

Anthony R Fooks (AR)

Animal and Plant Health Agency (Weybridge), Surrey, KT15 3NB, United Kingdom.
Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.

Articles similaires

Humans United States Aged Cross-Sectional Studies Medicare Part C
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH