HSF1 phase transition mediates stress adaptation and cell fate decisions.
Adaptation, Physiological
/ genetics
Apoptosis
/ genetics
Breast Neoplasms
/ genetics
Cell Differentiation
Cell Line, Tumor
Cell Survival
/ genetics
Colonic Neoplasms
/ genetics
Female
Gene Expression Regulation, Neoplastic
Heat Shock Transcription Factors
/ genetics
Heat-Shock Proteins
/ genetics
Heat-Shock Response
/ genetics
Humans
Lung Neoplasms
/ genetics
Multiple Myeloma
/ genetics
Ovarian Neoplasms
/ genetics
Phase Transition
Signal Transduction
Single-Cell Analysis
Transcription, Genetic
Journal
Nature cell biology
ISSN: 1476-4679
Titre abrégé: Nat Cell Biol
Pays: England
ID NLM: 100890575
Informations de publication
Date de publication:
02 2020
02 2020
Historique:
received:
02
01
2019
accepted:
16
12
2019
pubmed:
6
2
2020
medline:
16
4
2020
entrez:
5
2
2020
Statut:
ppublish
Résumé
Under proteotoxic stress, some cells survive whereas others die. The mechanisms governing this heterogeneity in cell fate remain unknown. Here we report that condensation and phase transition of heat-shock factor 1 (HSF1), a transcriptional regulator of chaperones
Identifiants
pubmed: 32015439
doi: 10.1038/s41556-019-0458-3
pii: 10.1038/s41556-019-0458-3
pmc: PMC7135912
mid: NIHMS1546845
doi:
Substances chimiques
HSF1 protein, human
0
Heat Shock Transcription Factors
0
Heat-Shock Proteins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
151-158Subventions
Organisme : NCI NIH HHS
ID : U54 CA225088
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK125263
Pays : United States
Organisme : NHLBI NIH HHS
ID : T32 HL007627
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA014051
Pays : United States
Organisme : NCI NIH HHS
ID : K99 CA188679
Pays : United States
Organisme : NCI NIH HHS
ID : R37 CA248565
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA194005
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA006516
Pays : United States
Organisme : NCI NIH HHS
ID : R00 CA188679
Pays : United States
Références
Lindquist, S. The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191 (1986).
pubmed: 2427013
Vihervaara, A. & Sistonen, L. HSF1 at a glance. J. Cell Sci. 127, 261–266 (2014).
pubmed: 24421309
Sarge, K. D., Murphy, S. P. & Morimoto, R. I. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell Biol. 13, 1392–1407 (1993).
pubmed: 8441385
pmcid: 359449
Cotto, J., Fox, S. & Morimoto, R. HSF1 granules: a novel stress-induced nuclear compartment of human cells. J. Cell Sci. 110, 2925–2934 (1997).
pubmed: 9359875
Jolly, C., Morimoto, R., Robert-Nicoud, M. & Vourc’h, C. HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites. J. Cell Sci. 110, 2935–2941 (1997).
pubmed: 9359877
Jolly, C., Usson, Y. & Morimoto, R. I. Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc. Natl Acad. Sci. USA 96, 6769–6774 (1999).
pubmed: 10359787
Nonaka, T., Akimoto, T., Mitsuhashi, N., Tamaki, Y. & Nakano, T. Changes in the number of HSF1 positive granules in the nucleus reflects heat shock semiquantitatively. Cancer Lett. 202, 89–100 (2003).
pubmed: 14643030
Au, Q., Kanchanastit, P., Barber, J. R., Ng, S. C. & Zhang, B. High-content image-based screening for small-molecule chaperone amplifiers in heat shock. J. Biomol. Screen. 13, 953–959 (2008).
pubmed: 19015292
Biamonti, G. & Vourc’h, C. Nuclear stress bodies. Cold Spring Harb. Perspect. Biol. 2, a000695 (2010).
pubmed: 20516127
pmcid: 2869524
Chowdhary, S., Kainth, A. S., Pincus, D. & Gross, D. S. Heat shock factor 1 drives intergenic association of its target gene loci upon heat shock. Cell Rep. 26, 18–28.e5 (2019).
pubmed: 30605674
pmcid: 6435272
Li, J., Labbadia, J. & Morimoto, R. I. Rethinking HSF1 in stress, development, and organismal health. Trends Cell Biol. 27, 895–905 (2017).
pubmed: 28890254
pmcid: 5696061
Anckar, J. & Sistonen, L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80, 1089–1115 (2011).
pubmed: 21417720
Metz, A., Soret, J., Vourc’h, C., Tazi, J. & Jolly, C. A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J. Cell Sci. 117, 4551–4558 (2004).
pubmed: 15331664
Rizzi, N. et al. Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock. Mol. Biol. Cell 15, 543–551 (2004).
pubmed: 14617804
pmcid: 329232
Jolly, C. et al. In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J. Cell Biol. 156, 775–781 (2002).
pubmed: 11877455
pmcid: 2173303
Jolly, C. et al. Stress-induced transcription of satellite III repeats. J. Cell Biol. 164, 25–33 (2004).
pubmed: 14699086
pmcid: 2171959
Eymery, A., Souchier, C., Vourc’h, C. & Jolly, C. Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells. Exp. Cell Res. 316, 1845–1855 (2010).
pubmed: 20152833
Holmberg, C. I., Illman, S. A., Kallio, M., Mikhailov, A. & Sistonen, L. Formation of nuclear HSF1 granules varies depending on stress stimuli. Cell Stress Chaperones 5, 219–228 (2000).
pubmed: 11005380
pmcid: 312888
Lin, J.-R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018).
pubmed: 29993362
pmcid: 6075866
Du, Z. et al. Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging. Nat. Protoc. 14, 2900–2930 (2019).
pubmed: 31534232
pmcid: 6959005
Calderwood, S. K. & Gong, J. Heat shock proteins promote cancer: it’s a protection racket. Trends Biochem. Sci. 41, 311–323 (2016).
pubmed: 26874923
pmcid: 4911230
Banaszynski, L. A., Chen, L.-C., Maynard-Smith, L. A., Ooi, A. G. L. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).
pubmed: 16959577
pmcid: 3290523
Zuo, J., Baler, R., Dahl, G. & Voellmy, R. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. Cell. Biol. 14, 7557–7568 (1994).
pubmed: 7935471
pmcid: 359292
Deng, J. et al. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12, 171–185 (2007).
pubmed: 17692808
Mateju, D. et al. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J. 36, 1669–1687 (2017).
pubmed: 28377462
pmcid: 5470046
Kroschwald, S., Maharana, S. & Simon, A. Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters 3, e201702000010 (2017).
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).
pubmed: 29961577
pmcid: 6063760
Neudegger, T., Verghese, J., Hayer-Hartl, M., Hartl, F. U. & Bracher, A. Structure of human heat-shock transcription factor 1 in complex with DNA. Nat. Struct. Mol. Biol. 23, 140–146 (2016).
pubmed: 26727489
Guettouche, T., Boellmann, F., Lane, W. S. & Voellmy, R. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem. 6, 4 (2005).
pubmed: 15760475
pmcid: 1079796
Budzyński, M. A., Puustinen, M. C., Joutsen, J. & Sistonen, L. Uncoupling stress-inducible phosphorylation of heat shock factor 1 from its activation. Mol. Cell. Biol. 35, 2530–2540 (2015).
pubmed: 25963659
pmcid: 4475925
Santagata, S. et al. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc. Natl Acad. Sci. USA 108, 18378–18383 (2011).
pubmed: 22042860
Mendillo, M. L. et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150, 549–562 (2012).
pubmed: 22863008
pmcid: 3438889
Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).
pubmed: 25288112
Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 351, eaar2555 (2018).
Pessina, F. et al. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat. Cell Biol. 21, 1286–1299 (2019).
pubmed: 31570834
Kroschwald, S. et al. Different material states of Pub1 condensates define distinct modes of stress adaptation and recovery. Cell Rep. 23, 3327–3339 (2018).
pubmed: 29898402
Riback, J. A. et al. Stress-triggered phase separation is an adaptive, Evolutionarily tuned response. Cell 168, 1028–1040 (2017).
pubmed: 28283059
pmcid: 5401687
Trivedi, P. et al. The inner centromere is a biomolecular condensate scaffolded by the chromosomal passenger complex. Nat. Cell Biol. 21, 1127–1137 (2019).
pubmed: 31481798
Suderman, R., Bachman, J. A., Smith, A., Sorger, P. K. & Deeds, E. J. Fundamental trade-offs between information flow in single cells and cellular populations. Proc. Natl Acad. Sci. USA 114, 5755–5760 (2017).
pubmed: 28500273
Cherkasov, V. et al. Coordination of translational control and protein homeostasis during severe heat stress. Curr. Biol. 23, 2452–2462 (2013).
pubmed: 24291094
Hiraoka, Y., Sedat, J. W. & Agard, D. A. Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy. Biophy. J. 57, 325–333 (1990).
Aguet, F., Antonescu, C. N., Mettlen, M., Schmid, S. L. & Danuser, G. Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev. Cell 26, 279–291 (2013).
pubmed: 23891661
pmcid: 3939604