Curcuma longa and Trigonella foenum graecum-enriched nutrient mixture from germinated Macrotyloma uniflorum and Vigna radiate ameliorate nonalcoholic fatty liver diseases in rats.
food processing
lipotoxicity
nutritional therapy
Journal
Journal of food biochemistry
ISSN: 1745-4514
Titre abrégé: J Food Biochem
Pays: United States
ID NLM: 7706045
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
10
10
2019
revised:
08
01
2020
accepted:
13
01
2020
pubmed:
6
2
2020
medline:
22
6
2021
entrez:
5
2
2020
Statut:
ppublish
Résumé
The prevalence of nonalcoholic fatty liver is increasing due to modern lifestyle. Germinated and dehulled Macrotyloma uniflorum and Vigna radiate were shown to have enhanced nutrients. Curcuma longa and Trigonella foenum graecum were proven hepatoprotective.The supplementation of the nutrient herbal mixture to the MCD diet-induced steatosis shows reduced hepatic fat accumulation and lipid profile, and liver injury markers in serum also reserved in normal. Increased serum albumin in the treatment group indicates that the liver function is enhanced than that of steatosis. The supplementation of the herbal mixture has preserved the hepatic antioxidant. Zymographic analysis of matrix metalloproteinase, western blot determination of α-SMA, and histological evolution (H&E, Sirius red) depicted reduced fibrosis and reveled management of hepatic stellate cells in quiescent form. The present study concludes that the herbal mixture has reduced hepatocyte fat accumulation in steatotic animals, and curtailed the oxidative stress, further it prevents the progression of steatohepatitis. PRACTICAL APPLICATIONS: Fatty liver diseases can be treated by modulating the diet composition such as consuming food rich in the nutrient herbal mixture. In this study, the nutrient mixture was made with dynamic food processing techniques such as germination, dehulling, and milling to augment the nutritional contents. Besides, Macrotyloma uniflorum, Vigna radiate, Curcuma longa, and Trigonella foenum graecum were used to improve the medicinal value and antioxidant. This formulation could target the various stages of NAFLD. This study revealed that the nutrient herbal mixture reduces the steatosis of the liver and curtailed the progression of steatohepatitis from hepatic steatosis. Since the edible foodstuff was used to make the nutrient mixture, it has excellent clinical application.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13159Informations de copyright
© 2020 Wiley Periodicals, Inc.
Références
Asrani, S. K., Devarbhavi, H., Eaton, J., & Kamath, P. S. (2019). Burden of liver diseases in the world. Journal of Hepatology, 70(1), 151-171. https://doi.org/10.1016/j.jhep.2018.09.014
Barakat, H., & Hamza, A. (2011). Glycine alleviates liver injury induced by deficiency in methionine and or choline in rats. Australian Journal of Basic and Applied Sciences, 5(5), 1061-1070. Retrieved from https://www.researchgate.net/publication/230721157
Bei, W. J., Guo, J., Wu, H. Y., & Cao, Y. (2012). Lipid-regulating effect of traditional chinese medicine: Mechanisms of actions. Evidence-Based Complementary and Alternative Medicine, 2012, 1-10. https://doi.org/10.1155/2012/970635
Benedict, M., & Zhang, X. (2017). Non-alcoholic fatty liver disease: An expanded review. World Journal of Hepatology, 9(16), 715-732. https://doi.org/10.4254/wjh.v9.i16.715
Benítez, V., Cantera, S., Aguilera, Y., Mollá, E., Esteban, R. M., Díaz, M. F., & Martín-Cabrejas, M. A. (2013). Impact of germination on starch, dietary fiber and physicochemical properties in non-conventional legumes. Food Research International, 50(1), 64-69. https://doi.org/10.1016/j.foodres.2012.09.044
Bettermann, K., Hohensee, T., & Haybaeck, J. (2014). Steatosis and steatohepatitis: Complex disorders. International Journal of Molecular Sciences, 15(6), 9924-9944. https://doi.org/10.3390/ijms15069924
Brunt, E. M. (2001). Nonalcoholic steatohepatitis: Definition and pathology. Seminars in Liver Disease, 21(1), 3-16. http://www.ncbi.nlm.nih.gov/pubmed/11296695. https://doi.org/10.1055/s-2001-12925
Buzzetti, E., Pinzani, M., & Tsochatzis, E. A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease. Metabolism: Clinical and Experimental, 65(8), 1038-1048. https://doi.org/10.1016/j.metabol.2015.12.012
Coulibaly, A., Kouakou, B., & Chen, J. (2011). Phytic acid in cereal grains: Structure, healthy or harmful ways to reduce phytic acid in cereal grains and their effects on nutritional quality. American Journal of Plant Nutrition and Fertilization Technology, 1(1), 1-22. https://doi.org/10.3923/ajpnft.2011.1.22
Cunningham, R. P., Moore, M. P., Moore, A. N., Healy, J. C., Roberts, M. D., Rector, R. S., & Martin, J. S. (2018). Curcumin supplementation mitigates NASH development and progression in female Wistar rats. Physiological Reports, 6(14), e13789. https://doi.org/10.14814/phy2.13789
D’Amico, F., Consolo, M., Amoroso, A., Skarmoutsou, E., Mauceri, B., Stivala, F., … Mazzarino, M. C. (2010). Liver immunolocalization and plasma levels of MMP-9 in non-alcoholic steatohepatitis (NASH) and hepatitis C infection. Acta Histochemica, 112(5), 474-481. https://doi.org/10.1016/j.acthis.2009.05.005
Decaris, M. L., Li, K. W., Emson, C. L., Gatmaitan, M., Liu, S., Wang, Y., … Loomba, R. (2017). Identifying nonalcoholic fatty liver disease patients with active fibrosis by measuring extracellular matrix remodeling rates in tissue and blood. Hepatology, 65(1), 78-88. https://doi.org/10.1002/hep.28860
Dixit, P., Ghaskadbi, S., Mohan, H., & Devasagayam, T. P. A. (2005). Antioxidant properties of germinated fenugreek seeds. Phytotherapy Research, 19(11), 977-983. https://doi.org/10.1002/ptr.1769
Domitrović, R., Jakovac, H., Tomac, J., & Šain, I. (2009). Liver fibrosis in mice induced by carbon tetrachloride and its reversion by luteolin. Toxicology and Applied Pharmacology, 241(3), 311-321. https://doi.org/10.1016/j.taap.2009.09.001
Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
Fang, Y. L., Chen, H., Wang, C. L., & Liang, L. (2018). Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”. World Journal of Gastroenterology, 24(27), 2974-2983. https://doi.org/10.3748/wjg.v24.i27.2974
Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226(1), 497-509. http://www.ncbi.nlm.nih.gov/pubmed/13428781
Gentile, C. L., & Pagliassotti, M. J. (2008). The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. The Journal of Nutritional Biochemistry, 19(9), 567-576. https://doi.org/10.1016/j.jnutbio.2007.10.001
Goodman, Z. D. (2007). Grading and staging systems for inflammation and fibrosis in chronic liver diseases. Journal of Hepatology, 47(4), 598-607. https://doi.org/10.1016/j.jhep.2007.07.006
Hadizadeh, F., Faghihimani, E., & Adibi, P. (2017). Nonalcoholic fatty liver disease: Diagnostic biomarkers. World Journal of Gastrointestinal Pathophysiology, 8(2), 11-26. https://doi.org/10.4291/wjgp.v8.i2.11
Hansen, H. H., Feigh, M., Veidal, S. S., Rigbolt, K. T., Vrang, N., & Fosgerau, K. (2017). Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discovery Today, 22(11), 1707-1718. https://doi.org/10.1016/j.drudis.2017.06.007
Hewlings, S., & Kalman, D. (2017). Curcumin: A review of its’ effects on human health. Foods, 6(10), 92. https://doi.org/10.3390/foods6100092
Huang, C. Z., Tung, Y. T., Hsia, S. M., Wu, C. H., & Yen, G. C. (2017). The hepatoprotective effect of Phyllanthus emblica L. fruit on high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in SD rats. Food & Function, 8(2), 842-850. https://doi.org/10.1039/c6fo01585a
Jadeja, R., Devkar, R. V., & Nammi, S. (2014). Herbal medicines for the treatment of nonalcoholic steatohepatitis: Current scenario and future prospects. Evidence-Based Complementary and Alternative Medicine, 2014, 1-18. https://doi.org/10.1155/2014/648308
Jang, E.-M., Choi, M.-S., Jung, U. J., Kim, M.-J., Kim, H.-J., Jeon, S.-M., … Lee, M.-K. (2008). Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metabolism: Clinical and Experimental, 57(11), 1576-1583. https://doi.org/10.1016/j.metabol.2008.06.014
Jiang, S., Han, J., Li, T., Xin, Z., Ma, Z., Di, W., … Yang, Y. (2017). Curcumin as a potential protective compound against cardiac diseases. Pharmacological Research, 119, 373-383. https://doi.org/10.1016/j.phrs.2017.03.001
Kargulewicz, A., Stankowiak-Kulpa, H., & Grzymisałwski, M. (2014). Dietary recommendations for patients with nonalcoholic fatty liver disease. Przeglad Gastroenterologiczny, 9(1), 18-23. https://doi.org/10.5114/pg.2014.40845
Kawsar, S. M. A., Huq, E., Nahar, N., & Ozeki, Y. (2008). Identification and quantification of phenolic acids in Macrotyloma uniflorum by reversed phase-HPLC. American Journal of Plant Physiology, 3(4), 165-172. https://doi.org/10.3923/ajpp.2008.165.172
Kim, D.-K., Jeong, S. C., Gorinstein, S., & Chon, S.-U. (2012). Total polyphenols, antioxidant and antiproliferative activities of different extracts in mungbean seeds and sprouts. Plant Foods for Human Nutrition, 67(1), 71-75. https://doi.org/10.1007/s11130-011-0273-x
Kneeman, J. M., Misdraji, J., & Corey, K. E. (2012). Secondary causes of nonalcoholic fatty liver disease. Therapeutic Advances in Gastroenterology, 5(3), 199-207. https://doi.org/10.1177/1756283X11430859
Kruawan, K. (2012). Antimutagenic and co-mutagenic activities of some legume seeds and their seed coats. Journal of Medicinal Plants Research, 6(22), 3845-3851. https://doi.org/10.5897/jmpr12.243
Kumar, D. S., Prashanthi, G., Avasarala, H., & Banji, D. (2013). Antihypercholesterolemic effect of Macrotyloma uniflorum (lam.) verdc (fabaceae) extract on high-fat diet-induced hypercholesterolemia in sprague-dawley rats. Journal of Dietary Supplements, 10(2), 116-128. https://doi.org/10.3109/19390211.2013.790334
Lee, J. H., Jeon, J. K., Kim, S. G., Kim, S. H., Chun, T., & Imm, J.-Y. (2011). Comparative analyses of total phenols, flavonoids, saponins and antioxidant activity in yellow soy beans and mung beans. International Journal of Food Science & Technology, 46(12), 2513-2519. https://doi.org/10.1111/j.1365-2621.2011.02775.x
Lee, S. J., Kang, J. H., Iqbal, W., & Kwon, O. S. (2015). Proteomic analysis of mice fed methionine and choline deficient diet reveals marker proteins associated with steatohepatitis. PLoS ONE, 10(4), e0120577. https://doi.org/10.1371/journal.pone.0120577
Machado, M. V., & Diehl, A. M. (2016). Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology, 150(8), 1769-1777. https://doi.org/10.1053/j.gastro.2016.02.066
Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
Nithyananthan, S., Keerthana, P., Umadevi, S., Shreyoshi, G., Ishfaq, H. M., Jajnasenee, B., & Thirunavukkarasu, C. (2020). Nutrient mixture from germinated legumes: Enhanced medicinal value with herbs attenuated liver cirrhosis. Journal of Food Biochemistry, 44, e13085. https://doi.org/10.1111/jfbc.13085
Oghbaei, M., & Prakash, J. (2017). Nutritional properties of green gram germinated in mineral fortified soak water: I. Effect of dehulling on total and bioaccessible nutrients and bioactive components. Journal of Food Science and Technology, 54(4), 871-879. https://doi.org/10.1007/s13197-016-2382-x
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
Palladini, G., Di Pasqua, L. G., Berardo, C., Siciliano, V., Richelmi, P., Perlini, S., … Vairetti, M. (2019). Animal models of steatosis and steatohepatitis exhibit hepatic lobe-specific gelatinases activity and oxidative stress. Canadian Journal of Gastroenterology and Hepatology, 2019, 1-9. https://doi.org/10.1155/2019/5413461
Parola, M., & Robino, G. (2001). Oxidative stress-related molecules and liver fibrosis. Journal of Hepatology, 35(2), 297-306. https://doi.org/10.1016/S0168-8278(01)00142-8
Perumpail, B., Li, A., Iqbal, U., Sallam, S., Shah, N., Kwong, W., … Ahmed, A. (2018). Potential therapeutic benefits of herbs and supplements in patients with NAFLD. Diseases, 6(3), 80. https://doi.org/10.3390/diseases6030080
Prasad, S. K., & Singh, M. K. (2015). Horse gram-An underutilized nutraceutical pulse crop: A review. Journal of Food Science and Technology, 52(5), 2489-2499. https://doi.org/10.1007/s13197-014-1312-z
Rajagopal, V., Pushpan, C. K., & Antony, H. (2017). Comparative effect of horse gram and black gram on inflammatory mediators and antioxidant status. Journal of Food and Drug Analysis, 25(4), 845-853. https://doi.org/10.1016/j.jfda.2016.08.010
Raju, J., Gupta, D., Rao, A. R., Yadava, P. K., & Baquer, N. Z. (2001). Trigonella foenum graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Molecular and Cellular Biochemistry, 224(1-2), 45-51. https://doi.org/10.1023/A:1011974630828
Rao, D. S., Sekhara, N. C., Satyanarayana, M. N., & Srinivasan, M. (2018). Effect of curcumin on serum and liver cholesterol levels in the rat. The Journal of Nutrition, 100(11), 1307-1315. https://doi.org/10.1093/jn/100.11.1307
Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. G. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179(4073), 588-590. https://doi.org/10.1126/SCIENCE.179.4073.588
Sahebkar, A., Serban, M. C., Ursoniu, S., & Banach, M. (2015). Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Journal of Functional Foods, 18, 898-909. https://doi.org/10.1016/j.jff.2015.01.005
Saleh, D. O., Ahmed, R. F., & Amin, M. M. (2017). Modulatory role of co-enzyme Q10 on methionine and choline deficient diet-induced non-alcoholic steatohepatitis in albino rats. Applied Physiology, Nutrition, and Metabolism, 42(3), 243-249. https://doi.org/10.1139/apnm-2016-0320
Sayiner, M., Koenig, A., Henry, L., & Younossi, Z. M. (2016). Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the united states and the rest of the world. Clinics in Liver Disease, 20(2), 205-214. https://doi.org/10.1016/j.cld.2015.10.001
Schattenberg, J. M., & Galle, P. R. (2010). Animal models of non-alcoholic steatohepatitis: Of mice and man. Digestive Diseases, 28(1), 247-254. https://doi.org/10.1159/000282097
Schulz, P. O., Ferreira, F. G., Nascimento, M. D. F. A., Vieira, A., Ribeiro, M. A., David, A. I., & Szutan, L. A. (2015). Association of nonalcoholic fatty liver disease and liver cancer. World Journal of Gastroenterology, 21(3), 913. https://doi.org/10.3748/wjg.v21.i3.913
Senadheera, S. P. A., Ekanayake, S., & Wanigatunge, C. (2014). Anti-diabetic properties of rice-based herbal porridges in diabetic wistar rats. Phytotherapy Research, 28(10), 1567-1572. https://doi.org/10.1002/ptr.5169
Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389-394. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4556490. https://doi.org/10.1016/0003-2697(72)90132-7
Subastri, A., Suyavaran, A., Preedia Babu, E., Nithyananthan, S., Barathidasan, R., & Thirunavukkarasu, C. (2018). Troxerutin with copper generates oxidative stress in cancer cells: Its possible chemotherapeutic mechanism against hepatocellular carcinoma. Journal of Cellular Physiology, 233(3), 1775-1790. https://doi.org/10.1002/jcp.26061
Sushma, N., & Devasena, T. (2010). Aqueous extract of Trigonella foenum graecum (fenugreek) prevents cypermethrin-induced hepatotoxicity and nephrotoxicity. Human & Experimental Toxicology, 29(4), 311-319. https://doi.org/10.1177/0960327110361502
Tang, D., Dong, Y., Ren, H., Li, L., & He, C. (2014). A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal, 8(1), 4. https://doi.org/10.1186/1752-153X-8-4
Traber, P. G., Chou, H., Zomer, E., Hong, F., Klyosov, A., Fiel, M.-I., & Friedman, S. L. (2013). Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS ONE, 8(10), e75361. https://doi.org/10.1371/journal.pone.0075361
Wang, F. S., Fan, J. G., Zhang, Z., Gao, B., & Wang, H. Y. (2014). The global burden of liver disease: The major impact of China. Hepatology, 60(6), 2099-2108. https://doi.org/10.1002/hep.27406
Wang, Y., Li, J., Zhuge, L., Su, D., Yang, M., Tao, S., & Li, J. (2014). Comparison between the efficacies of curcumin and puerarin in C57BL/6 mice with steatohepatitis induced by a methionine- and choline-deficient diet. Experimental and Therapeutic Medicine, 7(3), 663-668. https://doi.org/10.3892/etm.2013.1461
Wani, S. A., & Kumar, P. (2018). Fenugreek: A review on its nutraceutical properties and utilization in various food products. Journal of the Saudi Society of Agricultural Sciences, https://doi.org/10.1016/j.jssas.2016.01.007
Washington, K., Wright, K., Shyr, Y., Hunter, E. B., Olson, S., & Raiford, D. S. (2000). Hepatic stellate cell activation in nonalcoholic steatohepatitis and fatty liver. Human Pathology, 31(7), 822-828. https://doi.org/10.1053/hupa.2000.8440
Yasutake, K., Kohjima, M., Nakashima, M., Kotoh, K., Nakamuta, M., & Enjoji, M. (2012). Nutrition therapy for liver diseases based on the status of nutritional intake. Gastroenterology Research and Practice, 2012, 1-8. https://doi.org/10.1155/2012/859697