Phase variation in pneumococcal populations during carriage in the human nasopharynx.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 02 2020
04 02 2020
Historique:
received:
01
08
2019
accepted:
28
12
2019
entrez:
6
2
2020
pubmed:
6
2
2020
medline:
18
11
2020
Statut:
epublish
Résumé
Streptococcus pneumoniae is one of the world's leading bacterial pathogens, responsible for pneumonia, septicaemia and meningitis. Asymptomatic colonisation of the nasopharynx is considered to be a prerequisite for these severe infections, however little is understood about the biological changes that permit the pneumococcus to switch from asymptomatic coloniser to invasive pathogen. A phase variable type I restriction-modification (R-M) system (SpnIII) has been linked to a change in capsule expression and to the ability to successfully colonise the murine nasopharynx. Using our laboratory data, we have developed a Markov change model that allows prediction of the expected level of phase variation within a population, and as a result measures when populations deviate from those expected at random. Using this model, we have analysed samples from the Experimental Human Pneumococcal Carriage (EHPC) project. Here we show, through mathematical modelling, that the patterns of dominant SpnIII alleles expressed in the human nasopharynx are significantly different than those predicted by stochastic switching alone. Our inter-disciplinary work demonstrates that the expression of alternative methylation patterns should be an important consideration in studies of pneumococcal colonisation.
Identifiants
pubmed: 32019989
doi: 10.1038/s41598-020-58684-2
pii: 10.1038/s41598-020-58684-2
pmc: PMC7000782
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1803Subventions
Organisme : Medical Research Council
ID : MR/M003078/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/M011569/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T008822/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/N002903/1
Pays : United Kingdom
Commentaires et corrections
Type : ErratumIn
Références
Troeger, C. et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 18, 1191–1210 (2018).
doi: 10.1016/S1473-3099(18)30310-4
Zhang, Z., Clarke, T. B. & Weiser, J. N. Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J. Clin. Invest. 119, 1899–1909 (2009).
pubmed: 19509469
pmcid: 2701860
Gray, B. M., Turner, M. E. & Dillon, H. C. Epidemiologic Studies of Streptococcus pneumoniae in Infants: Acquisition, Carriage, and Infection during the First 24 Months of Life. Am. J. Epidemiol. 142, 923–933 (1980).
Southern, J. et al. Pneumococcal carriage in children and their household contacts six years after introduction of the 13-valent pneumococcal conjugate vaccine in England. PLoS One 13, 1–14 (2018).
doi: 10.1371/journal.pone.0195799
Johnston, C., Campo, N., Bergé, M. J., Polard, P. & Claverys, J. P. Streptococcus pneumoniae, le transformiste. Trends Microbiol. 22, 113–119 (2014).
doi: 10.1016/j.tim.2014.01.002
Croucher, N. J. et al. Diversification of bacterial genome content through distinct mechansims over different timescales. Nat. Commun. 19, 5471 (2014).
doi: 10.1038/ncomms6471
Manso, A. S. et al. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat. Commun. 5, 5055 (2014).
doi: 10.1038/ncomms6055
Li, J. et al. Epigenetic Switch Driven by DNA Inversions Dictates Phase Variation in Streptococcus pneumoniae. PLoS Pathog. 12, e1005762 (2016).
doi: 10.1371/journal.ppat.1005762
Oliver, M. B., Roy, B., Kumar, R., Lefkowitz, E. J. & Swords, W. E. Streptococcus pneumoniae TIGR4 Phase-Locked Opacity Variants Differ in Virulence Phenotypes. 2, e00386-17 (2017).
De Ste Croix, M. et al. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiol. Rev. 41, S3–S15 (2017).
doi: 10.1093/femsre/fux025
Dybvig, K. & Yu, H. Regulation of a restriction and modification system via DNA inversion in Mycoplasma pulmonis. Mol. Microbiol. 12, 547–560 (1994).
doi: 10.1111/j.1365-2958.1994.tb01041.x
Cerdeño-Tárraga, A. M. et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307, 1463–1465 (2005).
doi: 10.1126/science.1107008
Fagerlund, A., Langsrud, S., Schirmer, B. C. T., Møretrø, T. & Heir, E. Genome analysis of Listeria monocytogenes sequence type 8 strains persisting in salmon and poultry processing environments and comparison with related strains. PLoS One 11, 1–22 (2016).
doi: 10.1371/journal.pone.0151117
Serfiotis-Mitsa, D. et al. The Orf18 Gene Product from Conjugative Transposon Tn916 Is an ArdA Antirestriction Protein that Inhibits Type I DNA Restriction–Modification Systems. J. Mol. Biol. 383, 970–81 (2008).
doi: 10.1016/j.jmb.2008.06.005
Willemse, N. & Schultsz, C. Distribution of Type I Restriction–Modification Systems in Streptococcus suis: An Outlook. Pathogens 5, E62 (2016).
doi: 10.3390/pathogens5040062
De Ste Croix, M. et al. Recombination of the phase variable spnIII locus is independent of all known pneumococcal site-specific recombinases. J. Bacteriol. 201, e00233–19 (2019).
Kwun, M. J., Oggioni, M. R., De Ste Croix, M., Bentley, S. D. & Croucher, N. J. Excision-reintegration at a pneumococcal phase-variable restriction-modification locus drives within- and between-strain epigenetic differentiation and inhibits gene acquisition. Nucleic Acids Res. 46, 11438–11453 (2018).
pubmed: 30321375
pmcid: 6265443
Furi, L. et al. Methylation warfare: interaction of pneumococcal bacteriophages with their host. J. Bacteriol. 201, e00370–19 (2019).
doi: 10.1128/JB.00370-19
Lees, J. et al. Large scale genomic analysis shows no evidence for repeated pathogen adaptation during the invasive phase of bacterial meningitis in humans. Microb. Genomics 3, e000103 (2017).
doi: 10.1099/mgen.0.000103
Gritzfeld, J. F. et al. Experimental human pneumococcal carriage. J. Vis. Exp. 1–5. https://doi.org/10.3791/50115 (2013).
De Ste Croix, M. The Type I Restriction Modification System SpnIII of Streptococcus pneumoniae. http://hdl.handle.net/2381/40353 (University of Leicester, 2017).
Gerlini, A. et al. The Role of Host and Microbial Factors in the Pathogenesis of Pneumococcal Bacteraemia Arising from a Single Bacterial Cell Bottleneck. PLoS Pathog. 10, e1004026 (2014).
doi: 10.1371/journal.ppat.1004026
Ercoli, G. et al. Intracellular replication of Streptococcus pneumoniae inside splenic macrophages serves as a reservoir for septicaemia. Nat. Microbiol. 3, 600–610 (2018).
doi: 10.1038/s41564-018-0147-1
Trappetti, C. et al. Autoinducer 2 Signaling via the Phosphotransferase FruA Drives Galactose Utilization by Streptococcus pneumoniae, Resulting in Hypervirulence. MBio 8, 1–18 (2017).
doi: 10.1128/mBio.02269-16
Browall, S. et al. Intraclonal variations among streptococcus pneumoniae isolates influence the likelihood of invasive disease in children. J. Infect. Dis. 209, 377–388 (2014).
doi: 10.1093/infdis/jit481
Jeffreys, A. J., Neumann, R. & Wilson, V. Repeat unit sequence variation in minisatellites: A novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell1 60, 473–485 (1990).
doi: 10.1016/0092-8674(90)90598-9
Gagniuc, P. A. Markov Chains: From Theory to Implementation and Experimentation. (John Wiley & Sons, 2017).
Kadioglu, A. et al. Sex-based differences in susceptibility to respiratory and systemic pneumococcal disease in mice. J. Infect. Dis. 204, 1971–1979 (2011).
doi: 10.1093/infdis/jir657
Trappetti, C. et al. The impact of the competence quorum sensing system on Streptococcus pneumoniae biofilms varies depending on the experimental model. BMC Microbiol. 11, (2011).
Kerr, A. R. et al. The contribution of PspC to pneumococcal virulence varies between strains and is accomplished by both complement evasion and complement-independent mechanisms. Infect. Immun. 74, 5319–5324 (2006).
doi: 10.1128/IAI.00543-06
Haste, L. V. et al. Development and Characterisation of a Long Term Murine Model of Streptococcus pneumoniae Infection of the Lower Airways. Infect. Immun. 82, 3289–3298 (2014).
doi: 10.1128/IAI.01623-14
Kono, M. et al. Single Cell Bottlenecks in the Pathogenesis of Streptococcus pneumoniae. 1–20 (2016). 10.1371/journal.ppat.1005887
Wanford, J. J. et al. Random sorting of campylobacter jejuni phase variants due to a narrow bottleneck during colonization of broiler chickens. Microbiol. (United Kingdom) 164, 896–907 (2018).