A Direct S
S0→Tn transitions
heavy-atom-containing molecules
hypervalent iodine
photoreactions
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
20 04 2020
20 04 2020
Historique:
received:
28
11
2019
pubmed:
7
2
2020
medline:
7
2
2020
entrez:
7
2
2020
Statut:
ppublish
Résumé
According to the Grotthuss-Draper law, light must be absorbed by a substrate to initiate a photoreaction. There have been several reports, however, on the promotion of photoreactions using hypervalent iodine during irradiation with light from a non-absorbing region. This contradiction gave rise to a mystery regarding photoreactions involving hypervalent iodine. We demonstrated that the photoactivation of hypervalent iodine with light from the apparently non-absorbing region proceeds via a direct S
Identifiants
pubmed: 32027078
doi: 10.1002/anie.201915181
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6847-6852Informations de copyright
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
A. Bauer, F. Westkämper, S. Grimme, T. Bach, Nature 2005, 436, 1139;
D. A. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77;
M. A. Ischay, M. E. Anzovino, J. Du, T. P. Yoon, J. Am. Chem. Soc. 2008, 130, 12886;
J. M. R. Narayanam, J. W. Tucker, C. R. J. Stephenson, J. Am. Chem. Soc. 2009, 131, 8756;
M. T. Pirnot, D. A. Rankic, D. B. C. Martin, D. W. C. MacMillan, Science 2013, 339, 1593;
R. Brimioulle, T. Bach, Science 2013, 342, 840;
Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. C. MacMillan, Science 2014, 345, 437;
T. R. Blum, Z. D. Miller, D. M. Bates, I. A. Guzei, T. P. Yoon, Science 2016, 354, 1391;
M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898;
M. S. Oderinde, N. H. Jones, A. Juneau, M. Frenette, B. Aquila, S. Tentarelli, D. W. Robbins, J. W. Johannes, Angew. Chem. Int. Ed. 2016, 55, 13219;
Angew. Chem. 2016, 128, 13413;
M. Jiang, H. Li, H. Yang, H. Fu, Angew. Chem. Int. Ed. 2017, 56, 874;
Angew. Chem. 2017, 129, 892;
H. Yue, C. Zhu, M. Rueping, Angew. Chem. Int. Ed. 2018, 57, 1371;
Angew. Chem. 2018, 130, 1385;
L. Pitzer, F. Sandfort, F. Strieth-Kalthoff, F. Glorius, J. Am. Chem. Soc. 2017, 139, 13652;
X. Huang, T. R. Quinn, K. Harms, R. D. Webster, L. Zhang, O. Wiest, E. Meggers, J. Am. Chem. Soc. 2017, 139, 9120;
K. Shimomaki, K. Murata, R. Martin, N. Iwasawa, J. Am. Chem. Soc. 2017, 139, 9467;
M. J. James, J. L. Schwarz, F. Strieth-Kalthoff, B. Wibbeling, F. Glorius, J. Am. Chem. Soc. 2018, 140, 8624;
L.-L. Liao, G.-M. Cao, J.-H. Ye, G.-Q. Sun, W.-J. Zhou, Y.-Y. Gui, S.-S. Yan, G. Shen, D.-G. Yu, J. Am. Chem. Soc. 2018, 140, 17338;
T. Morack, C. Mück-Lichtenfeld, R. Gilmour, Angew. Chem. Int. Ed. 2019, 58, 1208;
Angew. Chem. 2019, 131, 1221;
X. Bao, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2019, 58, 2139;
Angew. Chem. 2019, 131, 2161;
X. Jiang, M.-M. Zhang, W. Xiong, L.-Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed. 2019, 58, 2402;
Angew. Chem. 2019, 131, 2424;
M. Zhu, C. Zheng, X. Zhang, S.-L. You, J. Am. Chem. Soc. 2019, 141, 2636;
C. Theunissen, M. A. Ashley, T. Rovis, J. Am. Chem. Soc. 2019, 141, 6791;
T. Patra, S. Mukherjee, J. Ma, F. Strieth-Kalthoff, F. Glorius, Angew. Chem. Int. Ed. 2019, 58, 10514;
Angew. Chem. 2019, 131, 10624;
S. I. Faßbender, J. J. Molloy, C. Mück-Lichtenfeld, R. Gilmour, Angew. Chem. Int. Ed. 2019, 58, 18619-18626;
Angew. Chem. 2019, 131, 18792-18799;
C. Kerzig, O. S. Wenger, Chem. Sci. 2019, 10, 11023;
D. Rombach, H.-A. Wagenknecht, Angew. Chem. Int. Ed. 2020, 59, 300.
Y. Kita, H. Tohma, K. Kikuchi, M. Inagaki, T. Yakura, J. Org. Chem. 1991, 56, 435;
Y. Kita, H. Tohma, K. Hatanaka, T. Takada, S. Fujita, S. Mitoh, H. Sakurai, S. Oka, J. Am. Chem. Soc. 1994, 116, 3684;
V. V. Zhdankin, A. P. Krasutsky, C. J. Kuehl, A. J. Simonsen, J. K. Woodward, B. Mismash, J. T. Bolz, J. Am. Chem. Soc. 1996, 118, 5192;
D. Macikenas, E. Skrzypczak-Jankun, J. D. Protasiewicz, J. Am. Chem. Soc. 1999, 121, 7164;
U. H. Hirt, B. Spingler, T. Wirth, J. Org. Chem. 1998, 63, 7674;
K. C. Nicolaou, T. Montagnon, P. S. Baran, Y.-L. Zhong, J. Am. Chem. Soc. 2002, 124, 2245;
P. Eisenberger, S. Gischig, A. Togni, Chem. Eur. J. 2006, 12, 2579;
I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. Int. Ed. 2007, 46, 754;
Angew. Chem. 2007, 119, 768;
R. J. Phipps, M. J. Gaunt, Science 2009, 323, 1593;
J. P. Brand, J. Waser, Angew. Chem. Int. Ed. 2010, 49, 7304;
Angew. Chem. 2010, 122, 7462;
S. M. Banik, J. W. Medley, E. N. Jacobsen, Science 2016, 353, 51;
A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116, 3328.
F. Minisci, E. Vismara, F. Fontana, M. C. N. Barbosa, Tetrahedron Lett. 1989, 30, 4569;
H. Togo, M. Aoki, M. Yokoyama, Tetrahedron Lett. 1991, 32, 6559;
H. Togo, M. Aoki, M. Yokoyama, Chem. Lett. 1992, 21, 2169;
H. Togo, M. Aoki, M. Yokoyama, Tetrahedron 1993, 49, 8241;
H. Togo, R. Taguchi, K. Yamaguchi, M. Yokoyama, J. Chem. Soc. Perkin Trans. 1 1995, 2135.
J. Xie, P. Xu, H. Li, Q. Xue, H. Jin, Y. Cheng, C. Zhu, Chem. Commun. 2013, 49, 5672;
Z. He, M. Bae, J. Wu, T. F. Jamison, Angew. Chem. Int. Ed. 2014, 53, 14451;
Angew. Chem. 2014, 126, 14679;
Y. Wang, G.-X. Li, G. Yang, G. He, G. Chen, Chem. Sci. 2016, 7, 2679;
P. Becker, T. Duhamel, C. J. Stein, M. Reiher, K. Muñiz, Angew. Chem. Int. Ed. 2017, 56, 8004;
Angew. Chem. 2017, 129, 8117;
H. Zhang, K. Muñiz, ACS Catal. 2017, 7, 4122;
Z. Wang, A. G. Herraiz, A. M. del Hoyo, M. G. Suero, Nature 2018, 554, 86;
Y. Liang, X. Zhang, D. W. C. MacMillan, Nature 2018, 559, 83;
J. Genovino, Y. Lian, Y. Zhang, T. O. Hope, A. Juneau, Y. Gagné, G. Ingle, M. Frenette, Org. Lett. 2018, 20, 3229;
T. Duhamel, K. Muñiz, Chem. Commun. 2019, 55, 933.
S. A. Moteki, A. Usui, S. Selvakumar, T. Zhang, K. Maruoka, Angew. Chem. Int. Ed. 2014, 53, 11060;
Angew. Chem. 2014, 126, 11240;
H. Tan, H. Li, W. Ji, L. Wang, Angew. Chem. Int. Ed. 2015, 54, 8374;
Angew. Chem. 2015, 127, 8494;
W. Ji, H. Tan, M. Wang, P. Li, L. Wang, Chem. Commun. 2016, 52, 1462;
S. Yang, H. Tan, W. Ji, X. Zhang, P. Li, L. Wang, Adv. Synth. Catal. 2017, 359, 443;
S. Selvakumar, R. Sakamoto, K. Maruoka, Chem. Eur. J. 2016, 22, 6552;
R. Sakamoto, H. Kashiwagi, K. Maruoka, Org. Lett. 2017, 19, 5126;
Y. Kobayashi, S. Masakado, Y. Takemoto, Angew. Chem. Int. Ed. 2018, 57, 693;
Angew. Chem. 2018, 130, 701;
X. Wu, H. Zhang, N. Tang, Z. Wu, D. Wang, M. Ji, Y. Xu, M. Wang, C. Zhu, Nat. Commun. 2018, 9, 3343;
C. F. Meyer, S. M. Hell, A. Misale, A. A. Trabanco, V. Gouverneur, Angew. Chem. Int. Ed. 2019, 58, 8829;
Angew. Chem. 2019, 131, 8921.
Y. Kanda, H. Kaseda, T. Matumura, Spectrochim. Acta 1964, 20, 1387;
D. R. Kearns, W. A. Case, J. Am. Chem. Soc. 1966, 88, 5087;
A. P. Marchetti, D. R. Kearns, J. Am. Chem. Soc. 1967, 89, 768.
See the Supporting Information for details.
N. J. Turro, V. Ramamurthy, J. C. Scaiano, Principles of Molecular Photochemistry-An Introduction, University Science Books, Sausalito, 2009.
T. H. Dunning, Jr., J. Chem. Phys. 1989, 90, 1007;
M. Dolg, U. Wedig, H. Stoll, H. Preuß, J. Chem. Phys. 1987, 86, 866;
D. Andrae, U. Haüßermann, M. Dolg, H. Stoll, H. Preuß, Theor. Chim. Acta 1990, 77, 123;
A. Bergner, M. Dolg, W. Kuchle, H. Stoll, H. Preuß, Mol. Phys. 1993, 80, 1431;
H. S. Yu, X. He, S. L. Li, D. G. Truhlar, Chem. Sci. 2016, 7, 5032;
K. Matsumoto, M. Nakajima, T. Nemoto, J. Phys. Org. Chem. 2019, 32, e3961.