Co-production of DHA and squalene by thraustochytrid from forest biomass.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
06 02 2020
06 02 2020
Historique:
received:
08
09
2019
accepted:
15
01
2020
entrez:
8
2
2020
pubmed:
8
2
2020
medline:
20
11
2020
Statut:
epublish
Résumé
Omega-3 fatty acids, and specifically docosahexaenoic acid (DHA), are important and essential nutrients for human health. Thraustochytrids are recognised as commercial strains for nutraceuticals production, they are group of marine oleaginous microorganisms capable of co-synthesis of DHA and other valuable carotenoids in their cellular compartment. The present study sought to optimize DHA and squalene production by the thraustochytrid Schizochytrium limacinum SR21. The highest biomass yield (0.46 g/g
Identifiants
pubmed: 32029800
doi: 10.1038/s41598-020-58728-7
pii: 10.1038/s41598-020-58728-7
pmc: PMC7005032
doi:
Substances chimiques
Biofuels
0
Docosahexaenoic Acids
25167-62-8
Squalene
7QWM220FJH
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1992Références
Cho, H. P., Nakamura, M. & Clarke, S. D. Cloning, Expression, and Fatty Acid Regulation of the Human ∆ -5 Desaturase Cloning, Expression, and Fatty Acid Regulation of the Human ⌬-5 Desaturase. J. Biol. Chem. 274, 37335–37339 (1999).
pubmed: 10601301
doi: 10.1074/jbc.274.52.37335
pmcid: 10601301
Lands, B. Historical perspectives on the impact of n-3 and n-6 nutrients on health. Prog. Lipid Res. 55, 17–29 (2014).
pubmed: 24794260
doi: 10.1016/j.plipres.2014.04.002
pmcid: 24794260
Shahidi, F. & Wanasundara, U. N. Omega-3 fatty acid concentrates: Nutritional aspects and production technologies. Trends Food Sci. Technol. 9, 230–240 (1998).
doi: 10.1016/S0924-2244(98)00044-2
Zárate, R., el Jaber-Vazdekis, N., Tejera, N., Pérez, J. A. & Rodríguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 6, 25 (2017).
pubmed: 28752333
pmcid: 5532176
doi: 10.1186/s40169-017-0153-6
Ling, X. et al. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310. Bioresour. Technol. 184, 139–147 (2015).
pubmed: 25451778
doi: 10.1016/j.biortech.2014.09.130
pmcid: 25451778
Berliner, D. et al. The omega-3 index in patients with heart failure: A prospective cohort study. Prostaglandins Leukot. Essent. Fat. Acids 140, 34–41 (2019).
doi: 10.1016/j.plefa.2018.11.012
Rubio-Rodríguez, N. et al. Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innov. Food Sci. Emerg. Technol. 11, 1–12 (2010).
doi: 10.1016/j.ifset.2009.10.006
Ward, O. P. & Singh, A. Omega-3/6 fatty acids: Alternative sources of production. Process Biochem. 40, 3627–3652 (2005).
doi: 10.1016/j.procbio.2005.02.020
Scheben, A. & Edwards, D. Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biol. 19, 178 (2018).
pubmed: 30367679
pmcid: 6202801
doi: 10.1186/s13059-018-1555-5
Chung, Y. S., Lee, J. W. & Chung, C. H. Molecular challenges in microalgae towards cost-effective production of quality biodiesel. Renew. Sustain. Energy Rev. 74, 139–144 (2017).
doi: 10.1016/j.rser.2017.02.048
Khan, M. I., Shin, J. H. & Kim, J. D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 17, 1–21 (2018).
doi: 10.1186/s12934-018-0879-x
Leyland, B., Leu, S. & Boussiba, S. Are Thraustochytrids algae? Fungal Biol. 121, 835–840 (2017).
pubmed: 28889907
doi: 10.1016/j.funbio.2017.07.006
pmcid: 28889907
Raghukumar, S. Thraustochytrid Marine Protists: Production of PUFAs and Other Emerging Technologies. 631–640, https://doi.org/10.1007/s10126-008-9135-4 (2008).
pubmed: 18712565
doi: 10.1007/s10126-008-9135-4
pmcid: 18712565
Skogsmarkens kolförråd. Forest statistics 2017, Aktuella uppgifter om de svenska skogarna från Riksskogstaxeringen (2017).
Selvaraj, M., Kumar, T. S. & Rao, M. V. Squalene, Biosynthesis and its role in production of bioactive compounds, a Proper Scientific Challenge – A Review. J. Emerg. Technol. Innov. Res. 6, 505–526 (2019).
Gohil, N., Bhattacharjee, G., Khambhati, K., Braddick, D. & Singh, V. Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front. Bioeng. Biotechnol. 7, 1–24 (2019).
doi: 10.3389/fbioe.2019.00001
Pollier, J. et al. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis. Nat. Microbiol. 4, 226–233 (2019).
pubmed: 30478288
doi: 10.1038/s41564-018-0305-5
pmcid: 30478288
Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).
pubmed: 30760928
pmcid: 6405297
doi: 10.1038/s41586-019-0945-5
Brown, A. J., Chua, N. K. & Yan, N. The shape of human squalene epoxidase expands the arsenal against cancer. Nat. Commun. 10, 2–5 (2019).
doi: 10.1038/s41467-018-07837-z
Reddy, L. H. & Couvreur, P. Squalene: A natural triterpene for use in disease management and therapy. Adv. Drug Deliv. Rev. 61, 1412–1426 (2009).
pubmed: 19804806
doi: 10.1016/j.addr.2009.09.005
pmcid: 19804806
Güneş, F. E. Medical use of squalene as a natural antioxidant. J. Marmara Univ. Inst. Heal. Sci. 3, 220–228 (2013).
Oya, S. I. et al. Catalytic Production of Branched Small Alkanes from Biohydrocarbons. Chem. Sus. Chem. 8, 2472–2475 (2015).
doi: 10.1002/cssc.201500375
Zhang, K., Zhang, X. & Tan, T. The production of bio-jet fuel from: Botryococcus braunii liquid over a Ru/CeO
doi: 10.1039/C6RA22517A
Rosales-Garcia, T., Jimenez-Martinez, C. & Davila-Ortiz, G. Squalene Extraction: Biological Sources and Extraction Methods. Int. J. Environ. Agric. Biotechnol. 2, 1662–1670 (2017).
doi: 10.22161/ijeab/2.4.26
Popa, O., Bəbeanu, N. E., Popa, I., Niţə, S. & Dinu-Pârvu, C. E. Methods for obtaining and determination of squalene from natural sources. Biomed Res. Int. 2015 (2015).
Xie, Y., Sen, B. & Wang, G. Mining terpenoids production and biosynthetic pathway in thraustochytrids. Bioresour. Technol. 244, 1269–1280 (2017).
pubmed: 28549813
doi: 10.1016/j.biortech.2017.05.002
pmcid: 28549813
Kim, K. et al. A novel fed-batch process based on the biology of Aurantiochytrium sp. KRS101 for the production of biodiesel and docosahexaenoic acid. Bioresour. Technol. 135, 269–274 (2013).
pubmed: 23206808
doi: 10.1016/j.biortech.2012.10.139
pmcid: 23206808
Patel, A., Pruthi, V. & Pruthi, P. A. Synchronized nutrient stress conditions trigger the diversion of CDP-DG pathway of phospholipids synthesis towards de novo TAG synthesis in oleaginous yeast escalating biodiesel production. Energy 139, 962–974 (2017).
doi: 10.1016/j.energy.2017.08.052
Huang, T. Y., Lu, W. C. & Chu, I. M. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Bioresour. Technol. 123, 8–14 (2012).
pubmed: 22929740
doi: 10.1016/j.biortech.2012.07.068
pmcid: 22929740
Abad, S. & Turon, X. Biotechnological production of docosahexaenoic acid using aurantiochytrium limacinum: Carbon sources comparison and growth characterization. Mar. Drugs 13, 7275–7284 (2015).
pubmed: 26690180
pmcid: 4699237
doi: 10.3390/md13127064
Wong, M. K. M., Tsui, C. K. M., Au, D. W. T. & Vrijmoed, L. L. P. Docosahexaenoic acid production and ultrastructure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentrations. Mycoscience 49, 266–270 (2008).
doi: 10.1007/S10267-008-0415-7
Ganuza, E., Yang, S., Amezquita, M., Giraldo-Silva, A. & Andersen, R. A. Genomics, Biology and Phylogeny Aurantiochytrium acetophilum sp. nov. (Thraustrochytriaceae), Including First Evidence of Sexual Reproduction. Protist 170, 209–232 (2019).
pubmed: 31100647
doi: 10.1016/j.protis.2019.02.004
pmcid: 31100647
Chi, Z., Pyle, D., Wen, Z., Frear, C. & Chen, S. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem. 42, 1537–1545 (2007).
doi: 10.1016/j.procbio.2007.08.008
Patil, K. P. & Gogate, P. R. Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Chem. Eng. J. 268, 187–196 (2015).
doi: 10.1016/j.cej.2015.01.050
Yokochi, T., Honda, D., Higashihara, T. & Nakahara, T. Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl. Microbiol. Biotechnol. 49, 72–76 (1998).
doi: 10.1007/s002530051139
Li, J. et al. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresour. Technol. 177, 51–57 (2015).
pubmed: 25479393
doi: 10.1016/j.biortech.2014.11.046
pmcid: 25479393
Shuler, M. L. & Kargi, F. Bioprocess Engineering: Basic Concepts. Prentice Hall 2, (2002).
Dosoretz, C. G., Chen, A. H. & Grethlein, H. E. Applied Microbiology Biotechnology Effect of oxygenation conditions on submerged cultures of Phanerochaete ¢ so porium. 131–137 (1990).
Alfenore, S. et al. Aeration strategy: A need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl. Microbiol. Biotechnol. 63, 537–542 (2004).
pubmed: 12879304
doi: 10.1007/s00253-003-1393-5
pmcid: 12879304
Ratledge, C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 86, 807–15 (2004).
pubmed: 15589690
doi: 10.1016/j.biochi.2004.09.017
pmcid: 15589690
Jakobsen, A. N., Aasen, I. M., Josefsen, K. D. & Strøm, A. R. Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl. Microbiol. Biotechnol. 80, 297–306 (2008).
pubmed: 18560831
doi: 10.1007/s00253-008-1537-8
pmcid: 18560831
Qiu, X. Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): Two distinct pathways. Prostaglandins Leukot. Essent. Fat. Acids 68, 181–186 (2003).
doi: 10.1016/S0952-3278(02)00268-5
Oboh, A. et al. Two alternative pathways for docosahexaenoic acid (DHA, 22:6n-3) biosynthesis are widespread among teleost fish. Sci. Rep. 7, 1–10 (2017).
doi: 10.1038/s41598-017-04288-2
Qiu, X., Hong, H. & MacKenzie, S. L. Identification of a Δ4 Fatty Acid Desaturase from Thraustochytrium sp. Involved in the Biosynthesis of Docosahexanoic Acid by Heterologous Expression in Saccharomyces cerevisiae and Brassica juncea. J. Biol. Chem. 276, 31561–31566 (2001).
pubmed: 11397798
doi: 10.1074/jbc.M102971200
pmcid: 11397798
Chang, G. et al. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour. Technol. 142, 400–406 (2013).
pubmed: 23747449
doi: 10.1016/j.biortech.2013.04.107
pmcid: 23747449
Ye, C. et al. Reconstruction and analysis of the genome-scale metabolic model of schizochytrium limacinum SR21 for docosahexaenoic acid production. BMC Genomics 16, 1–11 (2015).
doi: 10.1186/1471-2164-16-1
Wallis, J. G., Watts, J. L. & Browse, J. Polyunsaturated fatty acid synthesis: What will they think of next? Trends Biochem. Sci. 27, 467–473 (2002).
pubmed: 12217522
doi: 10.1016/S0968-0004(02)02168-0
pmcid: 12217522
Metz, J. G. et al. Production of polyunsaturated fatty acids by potyketide synthases in both prokaryotes and eukaryotes. Science (80-.). 293, 290–293 (2001).
doi: 10.1126/science.1059593
Chen, C. Y. & Yang, Y. T. Combining engineering strategies and fermentation technology to enhance docosahexaenoic acid (DHA) production from an indigenous Thraustochytrium sp. BM2 strain. Biochem. Eng. J. 133, 179–185 (2018).
doi: 10.1016/j.bej.2018.02.010
Iida, I. et al. Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J. Ferment. Bioeng. 81, 76–78 (1996).
doi: 10.1016/0922-338X(96)83125-4
Nakahara, T. et al. Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. isolated from yap islands. JAOCS, J. Am. Oil Chem. Soc. 73, 1421–1426 (1996).
doi: 10.1007/BF02523506
Barclay, W. R., Meager, K. M. & Abril, J. R. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J. Appl. Phycol. 6, 123–129 (1994).
doi: 10.1007/BF02186066
Yin, F.-W. et al. Development of a real-time bioprocess monitoring method for docosahexaenoic acid production by Schizochytrium sp. Bioresour. Technol. 216, 422–427 (2016).
pubmed: 27262097
doi: 10.1016/j.biortech.2016.06.053
pmcid: 27262097
Hauvermale, A. et al. Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 41, 739–747 (2006).
pubmed: 17120926
doi: 10.1007/s11745-006-5025-6
pmcid: 17120926
Metz, J. G. Production of Polyunsaturated Fatty Acids by Polyketide Synthases in Both Prokaryotes and Eukaryotes. Science (80-.). 293, 290–293 (2001).
doi: 10.1126/science.1059593
Chi, Z., Liu, Y., Frear, C. & Chen, S. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl. Microbiol. Biotechnol. 81, 1141–1148 (2009).
pubmed: 18936938
doi: 10.1007/s00253-008-1740-7
pmcid: 18936938
Patel, A., Matsakas, L., Rova, U. & Christakopoulos, P. Heterotrophic cultivation of Auxenochlorella protothecoides using forest biomass as a feedstock for sustainable biodiesel production. Biotechnol. Biofuels 11, 169 (2018).
pubmed: 29946359
pmcid: 6008946
doi: 10.1186/s13068-018-1173-1
Wu, S. T., Yu, S. T. & Lin, L. P. Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochem. 40, 3103–3108 (2005).
doi: 10.1016/j.procbio.2005.03.007
Safdar, W., Zan, X. & Song, Y. Synergistic Effect of Phosphorus and Nitrogen on Growth, Lipid Accumulation and Docosahexaenoic Acid Production in Crypthecodinium Cohnii. Int. J. Agric. Innov. Res. 5, 768–775 (2017).
Chang, G. et al. Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresour. Technol. 142, 255–260 (2013).
pubmed: 23743430
doi: 10.1016/j.biortech.2013.05.030
pmcid: 23743430
Liang, Y. et al. Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour. Technol. 101, 3623–3627 (2010).
pubmed: 20079633
doi: 10.1016/j.biortech.2009.12.087
pmcid: 20079633
Burja, A. M., Radianingtyas, H., Windust, A. & Barrow, C. J. Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: Screening of strains and optimization of omega-3 production. Appl. Microbiol. Biotechnol. 72, 1161–1169 (2006).
pubmed: 16625394
doi: 10.1007/s00253-006-0419-1
pmcid: 16625394
Armenta, R. E., Burja, A., Radianingtyas, H. & Barrow, C. J. Critical assessment of various techniques for the extraction of carotenoids and co-enzyme Q10 from the thraustochytrid strain ONC-T18. J. Agric. Food Chem. 54, 9752–9758 (2006).
pubmed: 17177497
doi: 10.1021/jf061260o
pmcid: 17177497
Jiang, Y., Fan, K.-W., Tsz-Yeung Wong, R. & Chen, F. Fatty Acid Composition and Squalene Content of the Marine Microalga Schizochytrium mangrovei. J. Agric. Food Chem. 52, 1196–1200 (2004).
pubmed: 14995120
doi: 10.1021/jf035004c
pmcid: 14995120
Nakazawa, A. et al. TLC screening of thraustochytrid strains for squalene production. J. Appl. Phycol. 26, 29–41 (2014).
doi: 10.1007/s10811-013-0080-x
Yue, C. J. & Jiang, Y. Impact of methyl jasmonate on squalene biosynthesis in microalga Schizochytrium mangrovei. Process Biochem. 44, 923–927 (2009).
doi: 10.1016/j.procbio.2009.03.016
Kaya, K. et al. Thraustochytrid Aurantiochytrium sp. 18W-13a Accummulates High Amounts of Squalene. Biosci. Biotechnol. Biochem. 75, 2246–2248 (2011).
pubmed: 22056449
doi: 10.1271/bbb.110430
pmcid: 22056449
Patel, A., Rova, U., Christakopoulos, P. & Matsakas, L. Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates. Biotechnol. Biofuels 12, 1–12 (2019).
doi: 10.1186/s13068-019-1593-6
Bumbak, F., Cook, S., Zachleder, V., Hauser, S. & Kovar, K. Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations. Appl. Microbiol. Biotechnol. 91, 31–46 (2011).
pubmed: 21567179
pmcid: 3114082
doi: 10.1007/s00253-011-3311-6
Matsakas, L. et al. Lignin-first biomass fractionation using a hybrid organosolv – Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresour. Technol. 273, 521–528 (2019).
pubmed: 30471644
doi: 10.1016/j.biortech.2018.11.055
pmcid: 30471644
Patel, A., Hrůzová, K., Rova, U., Christakopoulos, P. & Matsakas, L. Sustainable biorefinery concept for biofuel production through holistic volarization of food waste. Bioresour. Technol. 294 (2019).
Ren, L. J. et al. Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl. Microbiol. Biotechnol. 87, 1649–1656 (2010).
pubmed: 20445973
doi: 10.1007/s00253-010-2639-7
pmcid: 20445973