Synchronized Biventricular Heart Pacing in a Closed-chest Porcine Model based on Wirelessly Powered Leadless Pacemakers.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 02 2020
Historique:
received: 12 07 2019
accepted: 22 01 2020
entrez: 9 2 2020
pubmed: 9 2 2020
medline: 13 11 2020
Statut: epublish

Résumé

About 30% of patients with impaired cardiac function have ventricular dyssynchrony and seek cardiac resynchronization therapy (CRT). In this study, we demonstrate synchronized biventricular (BiV) pacing in a leadless fashion by implementing miniaturized and wirelessly powered pacemakers. With their flexible form factors, two pacemakers were implanted epicardially on the right and left ventricles of a porcine model and were inductively powered at 13.56 MHz and 40.68 MHz industrial, scientific, and medical (ISM) bands, respectively. The power consumption of these pacemakers is reduced to µW-level by a novel integrated circuit design, which considerably extends the maximum operating distance. Leadless BiV pacing is demonstrated for the first time in both open-chest and closed-chest porcine settings. The clinical outcomes associated with different interventricular delays are verified through electrophysiologic and hemodynamic responses. The closed-chest pacing only requires the external source power of 0.3 W and 0.8 W at 13.56 MHz and 40.68 MHz, respectively, which leads to specific absorption rates (SARs) 2-3 orders of magnitude lower than the safety regulation limit. This work serves as a basis for future wirelessly powered leadless pacemakers that address various cardiac resynchronization challenges.

Identifiants

pubmed: 32034237
doi: 10.1038/s41598-020-59017-z
pii: 10.1038/s41598-020-59017-z
pmc: PMC7005712
doi:

Types de publication

Journal Article Video-Audio Media

Langues

eng

Sous-ensembles de citation

IM

Pagination

2067

Commentaires et corrections

Type : ErratumIn

Références

Ha, S. et al. Silicon-Integrated High-Density Electrocortical Interfaces. Proceedings of the IEEE 105, 11–33 (2017).
doi: 10.1109/JPROC.2016.2587690
Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Science translational medicine 4, 122ra121–122ra121 (2012).
doi: 10.1126/scitranslmed.3003276
Wang, A. et al. Wireless capsule endoscopy. Gastrointestinal endoscopy 78, 805–815 (2013).
doi: 10.1016/j.gie.2013.06.026
Ho, J. S. et al. Wireless power transfer to deep-tissue microimplants. Proceedings of the National Academy of Sciences 111, 7974–7979 (2014).
doi: 10.1073/pnas.1403002111
Abiri, P. et al. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Scientific Reports 7 (2017).
Lyu, H., Wang, J., La, J.-H., Chung, J. M. & Babakhani, A. An energy-efficient wirelessly powered millimeter-scale neurostimulator implant based on systematic codesign of an inductive loop antenna and a custom rectifier. IEEE transactions on biomedical circuits and systems 12, 1131–1143 (2018).
doi: 10.1109/TBCAS.2018.2852680
Lyu, H., Gad, P., Zhong, H., Edgerton, V. R. & Babakhani, A. A 430-MHz wirelessly powered implantable pulse generator with intensity/rate control and sub-1 μA quiescent current consumption. IEEE transactions on biomedical circuits and systems 13, 180–190 (2019).
pubmed: 30418917
Agarwal, A. et al. A 4μW, ADPLL-based implantable amperometric biosensor in 65nm CMOS. Symposium on VLSI Circuits. C108-C109 (2017).
Liao, Y.-T., Yao, H., Lingley, A., Parviz, B. & Otis, B. P. A 3-µW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring. IEEE Journal of Solid-State Circuits 47, 335–344 (2011).
doi: 10.1109/JSSC.2011.2170633
Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361 (2019).
doi: 10.1038/s41586-018-0823-6
Abraham, W. T. et al. Cardiac resynchronization in chronic heart failure. New England Journal of Medicine 346, 1845–1853 (2002).
doi: 10.1056/NEJMoa013168
Yu, C.-M. & Hayes, D. L. Cardiac resynchronization therapy: state of the art 2013. European heart journal 34, 1396–1403 (2013).
doi: 10.1093/eurheartj/ehs454
Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. The New England journal of medicine 2004, 2140–2150 (2004).
doi: 10.1056/NEJMoa032423
Daubert, J.-C. et al. 2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. Heart rhythm 9, 1524–1576 (2012).
doi: 10.1016/j.hrthm.2012.07.025
Udo, E. O. et al. Incidence and predictors of short-and long-term complications in pacemaker therapy: the FOLLOWPACE study. 9, 728–735 (2012).
Chang, J. D., Manning, W. J., Ebrille, E. & Zimetbaum, P. J. Tricuspid valve dysfunction following pacemaker or cardioverter-defibrillator implantation. 69, 2331–2341 (2017).
Buttigieg, J., Asciak, R. & Azzopardi, C. M. Pacemaker lead-associated thrombosis in cardiac resynchronisation therapy. 2015, bcr2015210314 (2015).
Reddy, V. Y. et al. Permanent leadless cardiac pacing. Circulation 129, 1466–1471 (2014).
doi: 10.1161/CIRCULATIONAHA.113.006987
Knops, R. E. et al. Chronic performance of a leadless cardiac pacemaker. Journal of the American College of Cardiology 65, 1497–1504 (2015).
doi: 10.1016/j.jacc.2015.02.022
Duray, G. Z. et al. Long-term performance of a transcatheter pacing system: 12-Month results from the Micra Transcatheter Pacing Study. Heart Rhythm 14, 702–709 (2017).
doi: 10.1016/j.hrthm.2017.01.035
Lyu, H. et al. Leadless multisite pacing: A feasibility study using wireless power transfer based on Langendorff rodent heart models. Journal of cardiovascular electrophysiology 29, 1588–1593 (2018).
doi: 10.1111/jce.13738
Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the National Academy of Sciences 111, 1927–1932 (2014).
doi: 10.1073/pnas.1317233111
Lu, B. et al. Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy. Scientific reports 5, 16065 (2015).
doi: 10.1038/srep16065
Charthad, J., Weber, M. J., Chang, T. C. & Arbabian, A. A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link. IEEE Journal of solid-state circuits 50, 1741–1753 (2015).
doi: 10.1109/JSSC.2015.2427336
Kurs, A. et al. Wireless power transfer via strongly coupled magnetic resonances. science 317, 83–86 (2007).
doi: 10.1126/science.1143254
Sun, T. et al. A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection. IEEE transactions on Biomedical Engineering 59, 3247–3254 (2012).
doi: 10.1109/TBME.2012.2213597
Viventi, J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Science translational medicine 2, 24ra22–24ra22 (2010).
doi: 10.1126/scitranslmed.3000738
Lee, S. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nature nanotechnology 14, 156 (2019).
doi: 10.1038/s41565-018-0331-8
Simpson, J. & Ghovanloo, M. An experimental study of voltage, current, and charge controlled stimulation front-end circuitry. ISCAS 325–328 (2007).
Niemann, M., Schneider, G. H., Kühn, A., Vajkoczy, P. & Faust, K. Longevity of Implantable Pulse Generators in Bilateral Deep Brain Stimulation for Movement Disorders. Neuromodulation: Technology at the Neural Interface (2017).
Chen, K. et al. A system verification platform for high-density epiretinal prostheses. IEEE transactions on biomedical circuits and systems 7, 326–337 (2012).
doi: 10.1109/TBCAS.2012.2200103
Xu, Q., Hu, D., Duan, B. & He, J. A fully implantable stimulator with wireless power and data transmission for experimental investigation of epidural spinal cord stimulation 23, 683–692 (2015).
Alonso, C. et al. Electrocardiographic predictive factors of long-term clinical improvement with multisite biventricular pacing in advanced heart failure. The American journal of cardiology 84, 1417–1421 (1999).
doi: 10.1016/S0002-9149(99)00588-3
Sieniewicz, B. J. et al. Guidance for optimal site selection of a leadless left ventricular endocardial electrode improves acute hemodynamic response and chronic remodeling. JACC: Clinical Electrophysiology 4, 860–868 (2018).
pubmed: 30025684
Leo, M., Webster, D. & Betts, T. R. Acute electrical and hemodynamic effects of endocardial biventricular pacing using the Wi SE CRT system and conventional epicardial biventricular pacing. Journal of arrhythmia 34, 87–89 (2018).
doi: 10.1002/joa3.12019
Kennedy, J., Ter Haar, G. & Cranston, D. High intensity focused ultrasound: surgery of the future? The British journal of radiology 76, 590–599 (2003).
doi: 10.1259/bjr/17150274
Silvetti, M. S. et al. Cardiac pacing in paediatric patients with congenital heart defects: transvenous or epicardial? Europace 15, 1280–1286 (2013).
doi: 10.1093/europace/eut029

Auteurs

Hongming Lyu (H)

Electrical and Computer Engineering Department, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.

Mathews John (M)

Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA.

David Burkland (D)

School of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.

Brian Greet (B)

School of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.

Allison Post (A)

Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA.

Aydin Babakhani (A)

Electrical and Computer Engineering Department, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA. aydinbabakhani@ucla.edu.

Mehdi Razavi (M)

Texas Heart Institute, 6770 Bertner Avenue, Houston, TX, 77030, USA. mrazavi@texasheart.org.
School of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. mrazavi@texasheart.org.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH