Synchronized Biventricular Heart Pacing in a Closed-chest Porcine Model based on Wirelessly Powered Leadless Pacemakers.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
07 02 2020
07 02 2020
Historique:
received:
12
07
2019
accepted:
22
01
2020
entrez:
9
2
2020
pubmed:
9
2
2020
medline:
13
11
2020
Statut:
epublish
Résumé
About 30% of patients with impaired cardiac function have ventricular dyssynchrony and seek cardiac resynchronization therapy (CRT). In this study, we demonstrate synchronized biventricular (BiV) pacing in a leadless fashion by implementing miniaturized and wirelessly powered pacemakers. With their flexible form factors, two pacemakers were implanted epicardially on the right and left ventricles of a porcine model and were inductively powered at 13.56 MHz and 40.68 MHz industrial, scientific, and medical (ISM) bands, respectively. The power consumption of these pacemakers is reduced to µW-level by a novel integrated circuit design, which considerably extends the maximum operating distance. Leadless BiV pacing is demonstrated for the first time in both open-chest and closed-chest porcine settings. The clinical outcomes associated with different interventricular delays are verified through electrophysiologic and hemodynamic responses. The closed-chest pacing only requires the external source power of 0.3 W and 0.8 W at 13.56 MHz and 40.68 MHz, respectively, which leads to specific absorption rates (SARs) 2-3 orders of magnitude lower than the safety regulation limit. This work serves as a basis for future wirelessly powered leadless pacemakers that address various cardiac resynchronization challenges.
Identifiants
pubmed: 32034237
doi: 10.1038/s41598-020-59017-z
pii: 10.1038/s41598-020-59017-z
pmc: PMC7005712
doi:
Types de publication
Journal Article
Video-Audio Media
Langues
eng
Sous-ensembles de citation
IM
Pagination
2067Commentaires et corrections
Type : ErratumIn
Références
Ha, S. et al. Silicon-Integrated High-Density Electrocortical Interfaces. Proceedings of the IEEE 105, 11–33 (2017).
doi: 10.1109/JPROC.2016.2587690
Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Science translational medicine 4, 122ra121–122ra121 (2012).
doi: 10.1126/scitranslmed.3003276
Wang, A. et al. Wireless capsule endoscopy. Gastrointestinal endoscopy 78, 805–815 (2013).
doi: 10.1016/j.gie.2013.06.026
Ho, J. S. et al. Wireless power transfer to deep-tissue microimplants. Proceedings of the National Academy of Sciences 111, 7974–7979 (2014).
doi: 10.1073/pnas.1403002111
Abiri, P. et al. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Scientific Reports 7 (2017).
Lyu, H., Wang, J., La, J.-H., Chung, J. M. & Babakhani, A. An energy-efficient wirelessly powered millimeter-scale neurostimulator implant based on systematic codesign of an inductive loop antenna and a custom rectifier. IEEE transactions on biomedical circuits and systems 12, 1131–1143 (2018).
doi: 10.1109/TBCAS.2018.2852680
Lyu, H., Gad, P., Zhong, H., Edgerton, V. R. & Babakhani, A. A 430-MHz wirelessly powered implantable pulse generator with intensity/rate control and sub-1 μA quiescent current consumption. IEEE transactions on biomedical circuits and systems 13, 180–190 (2019).
pubmed: 30418917
Agarwal, A. et al. A 4μW, ADPLL-based implantable amperometric biosensor in 65nm CMOS. Symposium on VLSI Circuits. C108-C109 (2017).
Liao, Y.-T., Yao, H., Lingley, A., Parviz, B. & Otis, B. P. A 3-µW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring. IEEE Journal of Solid-State Circuits 47, 335–344 (2011).
doi: 10.1109/JSSC.2011.2170633
Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361 (2019).
doi: 10.1038/s41586-018-0823-6
Abraham, W. T. et al. Cardiac resynchronization in chronic heart failure. New England Journal of Medicine 346, 1845–1853 (2002).
doi: 10.1056/NEJMoa013168
Yu, C.-M. & Hayes, D. L. Cardiac resynchronization therapy: state of the art 2013. European heart journal 34, 1396–1403 (2013).
doi: 10.1093/eurheartj/ehs454
Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. The New England journal of medicine 2004, 2140–2150 (2004).
doi: 10.1056/NEJMoa032423
Daubert, J.-C. et al. 2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management. Heart rhythm 9, 1524–1576 (2012).
doi: 10.1016/j.hrthm.2012.07.025
Udo, E. O. et al. Incidence and predictors of short-and long-term complications in pacemaker therapy: the FOLLOWPACE study. 9, 728–735 (2012).
Chang, J. D., Manning, W. J., Ebrille, E. & Zimetbaum, P. J. Tricuspid valve dysfunction following pacemaker or cardioverter-defibrillator implantation. 69, 2331–2341 (2017).
Buttigieg, J., Asciak, R. & Azzopardi, C. M. Pacemaker lead-associated thrombosis in cardiac resynchronisation therapy. 2015, bcr2015210314 (2015).
Reddy, V. Y. et al. Permanent leadless cardiac pacing. Circulation 129, 1466–1471 (2014).
doi: 10.1161/CIRCULATIONAHA.113.006987
Knops, R. E. et al. Chronic performance of a leadless cardiac pacemaker. Journal of the American College of Cardiology 65, 1497–1504 (2015).
doi: 10.1016/j.jacc.2015.02.022
Duray, G. Z. et al. Long-term performance of a transcatheter pacing system: 12-Month results from the Micra Transcatheter Pacing Study. Heart Rhythm 14, 702–709 (2017).
doi: 10.1016/j.hrthm.2017.01.035
Lyu, H. et al. Leadless multisite pacing: A feasibility study using wireless power transfer based on Langendorff rodent heart models. Journal of cardiovascular electrophysiology 29, 1588–1593 (2018).
doi: 10.1111/jce.13738
Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the National Academy of Sciences 111, 1927–1932 (2014).
doi: 10.1073/pnas.1317233111
Lu, B. et al. Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy. Scientific reports 5, 16065 (2015).
doi: 10.1038/srep16065
Charthad, J., Weber, M. J., Chang, T. C. & Arbabian, A. A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link. IEEE Journal of solid-state circuits 50, 1741–1753 (2015).
doi: 10.1109/JSSC.2015.2427336
Kurs, A. et al. Wireless power transfer via strongly coupled magnetic resonances. science 317, 83–86 (2007).
doi: 10.1126/science.1143254
Sun, T. et al. A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection. IEEE transactions on Biomedical Engineering 59, 3247–3254 (2012).
doi: 10.1109/TBME.2012.2213597
Viventi, J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Science translational medicine 2, 24ra22–24ra22 (2010).
doi: 10.1126/scitranslmed.3000738
Lee, S. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nature nanotechnology 14, 156 (2019).
doi: 10.1038/s41565-018-0331-8
Simpson, J. & Ghovanloo, M. An experimental study of voltage, current, and charge controlled stimulation front-end circuitry. ISCAS 325–328 (2007).
Niemann, M., Schneider, G. H., Kühn, A., Vajkoczy, P. & Faust, K. Longevity of Implantable Pulse Generators in Bilateral Deep Brain Stimulation for Movement Disorders. Neuromodulation: Technology at the Neural Interface (2017).
Chen, K. et al. A system verification platform for high-density epiretinal prostheses. IEEE transactions on biomedical circuits and systems 7, 326–337 (2012).
doi: 10.1109/TBCAS.2012.2200103
Xu, Q., Hu, D., Duan, B. & He, J. A fully implantable stimulator with wireless power and data transmission for experimental investigation of epidural spinal cord stimulation 23, 683–692 (2015).
Alonso, C. et al. Electrocardiographic predictive factors of long-term clinical improvement with multisite biventricular pacing in advanced heart failure. The American journal of cardiology 84, 1417–1421 (1999).
doi: 10.1016/S0002-9149(99)00588-3
Sieniewicz, B. J. et al. Guidance for optimal site selection of a leadless left ventricular endocardial electrode improves acute hemodynamic response and chronic remodeling. JACC: Clinical Electrophysiology 4, 860–868 (2018).
pubmed: 30025684
Leo, M., Webster, D. & Betts, T. R. Acute electrical and hemodynamic effects of endocardial biventricular pacing using the Wi SE CRT system and conventional epicardial biventricular pacing. Journal of arrhythmia 34, 87–89 (2018).
doi: 10.1002/joa3.12019
Kennedy, J., Ter Haar, G. & Cranston, D. High intensity focused ultrasound: surgery of the future? The British journal of radiology 76, 590–599 (2003).
doi: 10.1259/bjr/17150274
Silvetti, M. S. et al. Cardiac pacing in paediatric patients with congenital heart defects: transvenous or epicardial? Europace 15, 1280–1286 (2013).
doi: 10.1093/europace/eut029