Liver Transcriptome Profiling Reveals That Dietary DHA and EPA Levels Influence Suites of Genes Involved in Metabolism, Redox Homeostasis, and Immune Function in Atlantic Salmon (Salmo salar).


Journal

Marine biotechnology (New York, N.Y.)
ISSN: 1436-2236
Titre abrégé: Mar Biotechnol (NY)
Pays: United States
ID NLM: 100892712

Informations de publication

Date de publication:
Apr 2020
Historique:
received: 09 07 2019
accepted: 17 01 2020
pubmed: 11 2 2020
medline: 21 10 2020
entrez: 11 2 2020
Statut: ppublish

Résumé

The optimal dietary requirement of omega-3 long-chain polyunsaturated fatty acids (ω3 LC-PUFA), namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), for Atlantic salmon that promotes growth and health warrants careful investigation. We used 44K microarrays to study the influence of increasing levels of dietary DHA + EPA (0, 1.0, and 1.4% of the diet, as formulated) in the presence of high linoleic acid (LA) on Atlantic salmon growth and liver transcriptome. After a 14-week feeding trial, Atlantic salmon fed diet ω3LC0 (i.e. 0% of DHA + EPA) showed significantly lower final weight and weight gain, and higher feed conversion ratio compared with ω3LC1.0 and ω3LC1.4 diet groups. The microarray experiment identified 55 and 77 differentially expressed probes (Rank Products analyses; PFP < 10%) in salmon fed diets ω3LC1.4 and ω3LC1.0 compared with those fed diet ω3LC0, respectively. The comparison between ω3LC1.4 and ω3LC1.0 revealed 134 differentially expressed probes. The microarray results were confirmed by qPCR analyses of 22 microarray-identified transcripts. Several key genes involved in fatty acid metabolism including LC-PUFA synthesis were upregulated in fish fed ω3LC0 compared with both other groups. Hierarchical clustering and linear regression analyses of liver qPCR and fatty acid composition data demonstrated significant correlations. In the current study, 1.0% ω3 LC-PUFA seemed to be the minimum requirement for Atlantic salmon based on growth performance; however, multivariate statistical analyses (PERMANOVA and SIMPER) showed that fish fed ω3LC1.0 and ω3LC1.4 diets had similar hepatic fatty acid profiles but marked differences in the transcript expression of biomarker genes involved in redox homeostasis (mgst1), immune responses (mxb, igmb, irf3, lect2a, srk2, and lyz2), and LC-PUFA synthesis (srebp1, fadsd5, and elovl2). This research has provided new insights into dietary requirement of DHA and EPA and their impact on physiologically important pathways in addition to lipid metabolism in Atlantic salmon.

Identifiants

pubmed: 32040779
doi: 10.1007/s10126-020-09950-x
pii: 10.1007/s10126-020-09950-x
doi:

Substances chimiques

Fatty Acids 0
Docosahexaenoic Acids 25167-62-8
eicosapentaenoic acid ethyl ester 6GC8A4PAYH
Eicosapentaenoic Acid AAN7QOV9EA

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

263-284

Subventions

Organisme : Genome Canada
ID : GAPP #6604
Organisme : Genome Atlantic
ID : GAPP #6604
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : 341304-2012
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : Postgraduate Scholarship-Doctoral (PGS D)

Références

Fish Physiol Biochem. 2014 Aug;40(4):1213-27
pubmed: 24515629
World J Gastroenterol. 2011 May 28;17(20):2552-7
pubmed: 21633660
BMC Genomics. 2017 Sep 8;18(1):706
pubmed: 28886690
BMC Res Notes. 2011 Mar 29;4:88
pubmed: 21447175
Mar Biotechnol (NY). 2016 Jun;18(3):418-35
pubmed: 27255337
Comp Biochem Physiol Part D Genomics Proteomics. 2015 Jun;14:1-15
pubmed: 25681993
Biochim Biophys Acta. 2011 Mar;1811(3):194-202
pubmed: 21193059
Immunol Lett. 1999 Feb;65(3):167-73
pubmed: 10065739
Br J Nutr. 2004 Jul;92(1):71-80
pubmed: 15230989
Fish Shellfish Immunol. 2008 Feb;24(2):252-6
pubmed: 18155922
J Clin Invest. 2005 Oct;115(10):2843-54
pubmed: 16184193
Sci Rep. 2019 Jan 10;9(1):27
pubmed: 30631091
BMC Genomics. 2012 Aug 20;13:410
pubmed: 22905698
Mar Biotechnol (NY). 2011 Aug;13(4):733-50
pubmed: 21127932
Fish Shellfish Immunol. 2010 Dec;29(6):1073-81
pubmed: 20817101
Fish Shellfish Immunol. 2013 Dec;35(6):1719-28
pubmed: 24436975
J Nutr. 2001 May;131(5):1535-43
pubmed: 11340112
Fish Shellfish Immunol. 2012 Feb;32(2):249-58
pubmed: 22126857
Genome Biol. 2002 Jun 18;3(7):RESEARCH0034
pubmed: 12184808
BMC Genomics. 2010 Jan 07;11:15
pubmed: 20056002
Fish Shellfish Immunol. 2012 Mar;32(3):482-8
pubmed: 22197689
Fish Shellfish Immunol. 2012 May;32(5):779-88
pubmed: 22343107
Fish Shellfish Immunol. 2014 Mar;37(1):131-8
pubmed: 24486631
BMC Vet Res. 2014 Mar 07;10:60
pubmed: 24606841
Comp Biochem Physiol B Biochem Mol Biol. 2014 Jun-Jul;172-173:74-89
pubmed: 24807616
Comp Biochem Physiol B Biochem Mol Biol. 2014 Apr;170:18-25
pubmed: 24462911
J Nutr Metab. 2012;2012:539426
pubmed: 22570770
PLoS One. 2018 Sep 21;13(9):e0198538
pubmed: 30240394
BMC Genomics. 2012 Aug 28;13:431
pubmed: 22928584
BMC Genomics. 2018 Nov 3;19(1):796
pubmed: 30390635
J Agric Food Chem. 2005 Dec 28;53(26):10166-78
pubmed: 16366711
Food Chem. 2014 Aug 15;157:51-61
pubmed: 24679751
Bioinformatics. 2005 Sep 15;21(18):3674-6
pubmed: 16081474
Nucleic Acids Res. 2001 May 1;29(9):e45
pubmed: 11328886
Comp Biochem Physiol Part D Genomics Proteomics. 2019 Jun;30:290-304
pubmed: 31003197
Br J Nutr. 2012 May;107(9):1254-73
pubmed: 21914239
J Nutr Sci. 2016 May 11;5:e19
pubmed: 27293556
J Nutr Sci. 2017 Jun 28;6:e32
pubmed: 29152236
Biochim Biophys Acta. 2015 Apr;1851(4):469-84
pubmed: 25149823
Br J Nutr. 2017 Jan;117(1):30-47
pubmed: 28112067
Bioinformatics. 2006 Nov 15;22(22):2825-7
pubmed: 16982708
Comp Biochem Physiol Part D Genomics Proteomics. 2013 Dec;8(4):317-33
pubmed: 24145116
Fish Shellfish Immunol. 2017 May;64:24-38
pubmed: 28242361
Br J Nutr. 2000 Nov;84(5):619-28
pubmed: 11177174
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21
pubmed: 11309499
Fish Shellfish Immunol. 2008 Feb;24(2):147-55
pubmed: 18158252
BMC Genomics. 2011 May 20;12:255
pubmed: 21599965
Fish Shellfish Immunol. 2015 May;44(1):156-63
pubmed: 25687393
PLoS One. 2016 Jul 25;11(7):e0159934
pubmed: 27454884
BMC Bioinformatics. 2006 Jul 26;7:359
pubmed: 16872483
Fish Shellfish Immunol. 2013 Feb;34(2):599-609
pubmed: 23246810
J Biomed Sci. 2015 Nov 17;22:103
pubmed: 26572495
Biochim Biophys Acta. 2008 Nov;1780(11):1304-17
pubmed: 18621099
FEBS Lett. 2004 Aug 27;573(1-3):83-92
pubmed: 15327980
Nucleic Acids Res. 2004 Feb 20;32(3):e34
pubmed: 14978222
Mar Biotechnol (NY). 2009 Sep-Oct;11(5):627-39
pubmed: 19184219
J Inherit Metab Dis. 2008 Dec;31(6):703-17
pubmed: 18987987
Fish Physiol Biochem. 2015 Oct;41(5):1187-204
pubmed: 26156499
Proc Nutr Soc. 2013 Aug;72(3):326-36
pubmed: 23668691

Auteurs

Xi Xue (X)

Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.

Jennifer R Hall (JR)

Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.

Albert Caballero-Solares (A)

Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada. acaballeroso@mun.ca.

Khalil Eslamloo (K)

Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.

Richard G Taylor (RG)

Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN, 55330, USA.

Christopher C Parrish (CC)

Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.

Matthew L Rise (ML)

Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH