Multi-cation perovskites prevent carrier reflection from grain surfaces.
Journal
Nature materials
ISSN: 1476-4660
Titre abrégé: Nat Mater
Pays: England
ID NLM: 101155473
Informations de publication
Date de publication:
Apr 2020
Apr 2020
Historique:
received:
03
04
2019
accepted:
30
12
2019
pubmed:
12
2
2020
medline:
12
2
2020
entrez:
12
2
2020
Statut:
ppublish
Résumé
The composition of perovskite has been optimized combinatorially such that it often contains six components (A
Identifiants
pubmed: 32042078
doi: 10.1038/s41563-019-0602-2
pii: 10.1038/s41563-019-0602-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
412-418Subventions
Organisme : U.S. Department of Energy (DOE)
ID : DE-SC0019345
Organisme : United States Department of Defense | United States Navy | Office of Naval Research (ONR)
ID : N00014-17-1-2524
Références
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
doi: 10.1021/ja809598r
Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088 (2011).
doi: 10.1039/c1nr10867k
Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
doi: 10.1038/srep00591
Lee, M. M., Teuscher, J. J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).
doi: 10.1126/science.1228604
Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–320 (2013).
doi: 10.1038/nature12340
Best Research-Cell Efficiency Chart (NREL, accessed 10 October 2019); https://www.nrel.gov/pv/cell-efficiency.html
deQuilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).
doi: 10.1126/science.aaa5333
Hou, Y. et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 358, 1192–1197 (2017).
doi: 10.1126/science.aao5561
Guo, Z. et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356, 59–62 (2017).
doi: 10.1126/science.aam7744
Davies, C. L. et al. Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process. Nat. Commun. 9, 293 (2018).
doi: 10.1038/s41467-017-02670-2
Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).
doi: 10.1038/nature25989
Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).
doi: 10.1038/nature18306
Dastidar, S. et al. High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 16, 3563–3570 (2016).
doi: 10.1021/acs.nanolett.6b00635
Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).
doi: 10.1126/science.aad1818
Wang, T. et al. Indirect to direct bandgap transition in methylammonium lead halide perovskite. Energy Environ. Sci. 10, 509–515 (2017).
doi: 10.1039/C6EE03474H
Schulz, P. et al. Electronic level alignment in inverted organometal perovskite solar cells. Adv. Mater. Interfaces 2, 1400532 (2015).
doi: 10.1002/admi.201400532
Pellet, N. et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. Engl. 53, 3151–3157 (2014).
doi: 10.1002/anie.201309361
Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).
doi: 10.1021/acs.chemmater.5b04107
McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).
doi: 10.1126/science.aad5845
Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).
doi: 10.1039/C5EE03874J
Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).
doi: 10.1038/nature14133
Tan, H. et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 9, 3100 (2018).
doi: 10.1038/s41467-018-05531-8
Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).
doi: 10.1126/science.aan2301
Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).
doi: 10.1038/s41586-018-0575-3
Correa-Baena, J.-P. et al. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 363, 627–631 (2019).
doi: 10.1126/science.aah5065
Dang, H. X. et al. Multi-cation synergy suppresses phase segregation in mixed-halide perovskites. Joule 3, 1746–1764 (2019).
doi: 10.1016/j.joule.2019.05.016
Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014).
doi: 10.1038/ncomms4646
Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).
doi: 10.1126/science.aaa2725
Dong, Q. et al. Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).
doi: 10.1126/science.aaa5760
Pazos-Outon, L. M. et al. Photon recycling in lead iodide perovskite solar cells. Science 351, 1430–1433 (2016).
doi: 10.1126/science.aaf1168
Yang, Y. et al. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat. Energy 2, 16207 (2017).
doi: 10.1038/nenergy.2016.207
Ščajev, P. et al. Two regimes of carrier diffusion in vapor-deposited lead-halide perovskites. J. Phys. Chem. C Nanomater. Interfaces 121, 21600–21609 (2017).
doi: 10.1021/acs.jpcc.7b04179
Guo, Z., Manser, J. S., Wan, Y., Kamat, P. V. & Huang, L. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nat. Commun. 6, 7471 (2015).
doi: 10.1038/ncomms8471
Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH
doi: 10.1126/science.1243167
Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).
doi: 10.1126/science.1243982
Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).
doi: 10.1038/nmat4014
Delor, M., Weaver, H. L., Yu, Q. & Ginsberg, N. S. Imaging material functionality through 3D nanoscale tracking of energy flow. Nat. Mater. 19, 56–62 (2020).
doi: 10.1038/s41563-019-0498-x
deQuilettes, D. W. et al. Tracking photoexcited carriers in hybrid perovskite semiconductors: trap-dominated spatial heterogeneity and diffusion. ACS Nano 11, 11488–11496 (2017).
doi: 10.1021/acsnano.7b06242
Yang, M. et al. Do grain boundaries dominate non-radiative recombination in CH
doi: 10.1039/C6CP08770A
Arias, D. H., Moore, D. T., Van De Lagemaat, J. & Johnson, J. C. Direct measurements of carrier transport in polycrystalline methylammonium lead iodide perovskite films with transient grating spectroscopy. J. Phys. Chem. Lett. 9, 5710–5717 (2018).
doi: 10.1021/acs.jpclett.8b02245
Cho, K. T. et al. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 10, 621–627 (2017).
doi: 10.1039/C6EE03182J
Luo, D. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018).
doi: 10.1126/science.aap9282
Shin, S. S. et al. Colloidally prepared La-doped BaSnO
doi: 10.1126/science.aam6620
Turren-Cruz, S.-H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).
doi: 10.1126/science.aat3583
Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).
doi: 10.1038/s41560-018-0192-2
Nazarenko, O., Yakunin, S., Morad, V., Cherniukh, I. & Kovalenko, M. V. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Mater. 9, e373 (2017).
doi: 10.1038/am.2017.45
Kadro, J. M., Nonomura, K., Gachet, D., Grätzel, M. & Hagfeldt, A. Facile route to freestanding CH
doi: 10.1038/srep11654
Quintero-Bermudez, R. et al. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat. Mater. 17, 900–907 (2018).
doi: 10.1038/s41563-018-0154-x