Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories.


Journal

Nature reviews. Neuroscience
ISSN: 1471-0048
Titre abrégé: Nat Rev Neurosci
Pays: England
ID NLM: 100962781

Informations de publication

Date de publication:
03 2020
Historique:
accepted: 18 12 2019
pubmed: 12 2 2020
medline: 7 5 2020
entrez: 12 2 2020
Statut: ppublish

Résumé

The dentate gyrus (DG) has a key role in hippocampal memory formation. Intriguingly, DG lesions impair many, but not all, hippocampus-dependent mnemonic functions, indicating that the rest of the hippocampus (CA1-CA3) can operate autonomously under certain conditions. An extensive body of theoretical work has proposed how the architectural elements and various cell types of the DG may underlie its function in cognition. Recent studies recorded and manipulated the activity of different neuron types in the DG during memory tasks and have provided exciting new insights into the mechanisms of DG computational processes, particularly for the encoding, retrieval and discrimination of similar memories. Here, we review these DG-dependent mnemonic functions in light of the new findings and explore mechanistic links between the cellular and network properties of, and the computations performed by, the DG.

Identifiants

pubmed: 32042144
doi: 10.1038/s41583-019-0260-z
pii: 10.1038/s41583-019-0260-z
pmc: PMC7115869
mid: EMS86703
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

153-168

Subventions

Organisme : European Research Council
ID : 787450
Pays : International

Références

Schacter, D. L. & Tulving, E. Memory Systems 1994 (MIT Press, 1994).
Eichenbaum, H. The Cognitive Neuroscience of Memory: An Introduction (Oxford University Press, 2012).
Squire, L. R. Mechanisms of memory. Science 232, 1612–1619 (1986).
pubmed: 3086978
Tonegawa, S., Morrissey, M. D. & Kitamura, T. The role of engram cells in the systems consolidation of memory. Nat. Rev. Neurosci. 19, 485–498 (2018).
pubmed: 29970909
Corkin, S. What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci. 3, 153–160 (2002).
pubmed: 11836523
Nadel, L., Samsonovich, A., Ryan, L. & Moscovitch, M. Multiple trace theory of human memory: computational, neuroimaging, and neuropsychological results. Hippocampus 10, 352–368 (2000).
pubmed: 10985275
Rosenbaum, R. S. et al. Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions. Nat. Neurosci. 3, 1044–1048 (2000).
pubmed: 11017178
Yonelinas, A. P., Ranganath, C., Ekstrom, A. D. & Wiltgen, B. J. A contextual binding theory of episodic memory: systems consolidation reconsidered. Nat. Rev. Neurosci. 20, 364–375 (2019).
pubmed: 30872808
Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R. & Fried, I. Internally generated reactivation of single neurons in human hippocampus during free recall. Science 322, 96–101 (2008).
pubmed: 18772395 pmcid: 2650423
Okuyama, T., Kitamura, T., Roy, D. S., Itohara, S. & Tonegawa, S. Ventral CA1 neurons store social memory. Science 353, 1536–1541 (2016).
pubmed: 27708103 pmcid: 5493325
O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).
pubmed: 5124915
Miller, J. F. et al. Neural activity in human hippocampal formation reveals the spatial context of retrieved memories. Science 342, 1111–1114 (2013).
pubmed: 24288336 pmcid: 4669102
Ison, M. J., Quian Quiroga, R. & Fried, I. Rapid encoding of new memories by individual neurons in the human brain. Neuron 87, 220–230 (2015).
pubmed: 26139375 pmcid: 4509714
Markus, E. J. et al. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 15, 7079–7094 (1995).
pubmed: 7472463 pmcid: 6578055
McHugh, T. J. et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317, 94–99 (2007). This study shows that mice with genetically ablated NR1 subunits of NMDARs at PP–GC synapses display impaired spatial-context discrimination in a CFC memory task and impaired contextual remapping of CA3 pyramidal cells.
pubmed: 17556551
Lisman, J. et al. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 20, 1434–1447 (2017).
pubmed: 29073641 pmcid: 5943637
Jensen, O. & Lisman, J. E. Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends Neurosci. 28, 67–72 (2005).
pubmed: 15667928
Buzsáki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal–entorhinal system. Nat. Neurosci. 16, 130–138 (2013).
pubmed: 23354386 pmcid: 4079500
Boldrini, M. et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22, 589–599.e5 (2018).
pubmed: 5957089 pmcid: 5957089
Patzke, N. et al. In contrast to many other mammals, cetaceans have relatively small hippocampi that appear to lack adult neurogenesis. Brain Struct. Funct. 220, 361–383 (2015).
pubmed: 24178679
Sorrells, S. F. et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377–381 (2018).
pubmed: 6179355 pmcid: 6179355
McNaughton, B. L. & Morris, R. G. M. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 10, 408–415 (1987).
McNaughton, B. L. & Nadel, L. in Neuroscience and Connectionist Theory (eds Gluck, M. A. & Rumelhart, D. E.), 1–64 (L. Erlbaum Associates, 1990).
Gilbert, P. E., Kesner, R. P. & Lee, I. Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus 11, 626–636 (2001).
pubmed: 11811656
Xavier, G. F. & Costa, V. C. I. Dentate gyrus and spatial behaviour. Prog. Neuro-psychopharmacol. Biol. Psychiatry 33, 762–773 (2009).
Sasaki, T. et al. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons. Nat. Neurosci. 21, 258–269 (2018). This study shows that selective ablation of GCs with colchicine reduces the occurrence of awake SWRs and the occurrence of CA3 ensembles encoding the future trajectory in a spatial working memory paradigm. This deficit is highly correlated with the loss of mossy-fibre innervation and spatial working memory performance.
pubmed: 29335604 pmcid: 5800997
Treves, A. & Rolls, E. T. Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (1994). This seminal theoretical work outlines a model of the hippocampus’ computational function and proposes a mechanism by which DG-mediated pattern separation can enhance hippocampal storage capacity.
pubmed: 7842058
Leutgeb, J. K., Leutgeb, S., Moser, M.-B. & Moser, E. I. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966 (2007). This experimental study shows that the firing patterns of DG neurons discriminate markedly between similar spatial enclosures.
Neunuebel, J. P. & Knierim, J. J. CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation. Neuron 81, 416–427 (2014).
pubmed: 24462102 pmcid: 3904133
Nakashiba, T. et al. Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149, 188–201 (2012). This study investigates disruption of the output from mature and young GCs, and shows that mature GCs promote rapid memory recall based on depleted cues whereas young GCs facilitate the discrimination of similar spatial contexts.
pubmed: 22365813 pmcid: 3319279
Hunsaker, M. R., Rosenberg, J. S. & Kesner, R. P. The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty. Hippocampus 18, 1064–1073 (2008).
pubmed: 18651615
Lee, J. W. & Jung, M. W. Separation or binding? Role of the dentate gyrus in hippocampal mnemonic processing. Neurosci. Biobehav. Rev. 75, 183–194 (2017).
pubmed: 28174077
Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).
pubmed: 22441246 pmcid: 3331914
Ramirez, S. et al. Creating a false memory in the hippocampus. Science 341, 387–391 (2013).
pubmed: 23888038
Freund, T. F. & Buzsáki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).
pubmed: 8915675
Amaral, D. G., Scharfman, H. E. & Lavenex, P. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog. Brain Res. 163, 3–22 (2007).
pubmed: 17765709 pmcid: 2492885
Pernía-Andrade, A. J. & Jonas, P. Theta–gamma-modulated synaptic currents in hippocampal granule cells in vivo define a mechanism for network oscillations. Neuron 81, 140–152 (2014).
pubmed: 24333053 pmcid: 3909463
Danielson, N. B. et al. Distinct contribution of adult-born hippocampal granule cells to context encoding. Neuron 90, 101–112 (2016). This study, using two-photon calcium imaging, reveals that young adult-born GCs show higher activity levels but lower spatial tuning and similarly moderate context selectivity compared with mature GCs.
pubmed: 26971949 pmcid: 4962695
Danielson, N. B. et al. In vivo imaging of dentate gyrus mossy cells in behaving mice. Neuron 93, 552–559.e4 (2017).
pubmed: 28132825 pmcid: 5510758
Diamantaki, M., Frey, M., Berens, P., Preston-Ferrer, P. & Burgalossi, A. Sparse activity of identified dentate granule cells during spatial exploration. eLife 5, e20252 (2016).
pubmed: 27692065 pmcid: 5077296
GoodSmith, D. et al. Spatial representations of granule cells and mossy cells of the dentate gyrus. Neuron 93, 677–690.e5 (2017). This study of single-unit and juxtacellular recordings from DG and CA3 cells reveals that independent sets of GCs, but overlapping sets of mossy cells, are active in widely distinct enclosures located in different rooms and demonstrate two modes of pattern separation in distinct excitatory cell populations of the DG.
pubmed: 28132828 pmcid: 5300955
Senzai, Y. & Buzsáki, G. Physiological properties and behavioral correlates of hippocampal granule cells and mossy cells. Neuron 93, 691–704.e5 (2017). This study establishes and validates classification criteria for GCs and mossy cells in single-unit recording data and finds stronger context-dependent remapping in mossy cells than in GCs.
pubmed: 28132824 pmcid: 5293146
Hainmueller, T. & Bartos, M. Parallel emergence of stable and dynamic memory engrams in the hippocampus. Nature 558, 292–296 (2018). This study, using chronic two-photon calcium imaging in head-fixed mice performing a spatial learning paradigm over multiple days, reveals highly stable, little context-selective place fields in GCs, but strong remapping over days and contexts in the CA3 and CA1.
pubmed: 29875406
Qin, H. et al. A visual-cue-dependent memory circuit for place navigation. Neuron 99, 47–55.e4 (2018).
pubmed: 29909996 pmcid: 6048686
Guo, N. et al. Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. Nat. Med. 24, 438–449 (2018).
pubmed: 29529016 pmcid: 5893385
van Dijk, M. T. & Fenton, A. A. On how the dentate gyrus contributes to memory discrimination. Neuron 98, 832–845.e5 (2018).
pubmed: 29731252 pmcid: 6066591
Ruediger, S. et al. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473, 514–518 (2011). This study shows that mossy-fibre long-term potentiation and a long-lasting reversible increase in filopodial synapses onto feedforward interneurons in the CA3 are required for contextual and spatial memory precision.
pubmed: 21532590
Krueppel, R., Remy, S. & Beck, H. Dendritic integration in hippocampal dentate granule cells. Neuron 71, 512–528 (2011).
pubmed: 21835347
Sloviter, R. S. et al. Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 243, 535–538 (1989).
pubmed: 2911756
Woods, N. I. et al. Preferential targeting of lateral entorhinal inputs onto newly integrated granule cells. J. Neurosci. 38, 5843–5853 (2018).
pubmed: 29793975 pmcid: 6021988
Scharfman, H. E. The CA3 ‘backprojection’ to the dentate gyrus. Prog. Brain Res. 163, 627–637 (2007).
pubmed: 17765742 pmcid: 1986638
Scharfman, H. E. The enigmatic mossy cell of the dentate gyrus. Nat. Rev. Neurosci. 17, 562–575 (2016).
pubmed: 27466143 pmcid: 5369357
Li, X. G., Somogyi, P., Ylinen, A. & Buzsáki, G. The hippocampal CA3 network: an in vivo intracellular labeling study. J. Comp. Neurol. 339, 181–208 (1994).
pubmed: 8300905
Vivar, C. et al. Monosynaptic inputs to new neurons in the dentate gyrus. Nat. Commun. 3, 1107 (2012).
pubmed: 23033083 pmcid: 4603575
Sun, Y., Grieco, S. F., Holmes, T. C. & Xu, X. Local and long-range circuit connections to hilar mossy cells in the dentate gyrus. eNeuro 4, ENEURO.0097-17.2017 (2017).
Acsády, L., Kamondi, A., Sík, A., Freund, T. & Buzsáki, G. GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J. Neurosci. 18, 3386–3403 (1998).
pubmed: 9547246 pmcid: 6792657
Nicoll, R. A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fibre synapses. Nat. Rev. Neurosci. 6, 863–876 (2005).
pubmed: 16261180
Hainmüller, T., Krieglstein, K., Kulik, A. & Bartos, M. Joint CP-AMPA and group I mGlu receptor activation is required for synaptic plasticity in dentate gyrus fast-spiking interneurons. Proc. Natl Acad. Sci. USA 111, 13211–13216 (2014).
Zucca, S. et al. Control of spike transfer at hippocampal mossy fiber synapses in vivo by GABA
pubmed: 28100741 pmcid: 6596754
Henze, D. A., Wittner, L. & Buzsáki, G. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat. Neurosci. 5, 790–795 (2002). This study shows, through stimulation of single GCs and recordings of their CA3 targets in anaesthetized rats, that high-frequency GC activity recruits pyramidal cell firing, whereas low-frequency activity primarily activates interneurons.
pubmed: 12118256
Mori, M., Abegg, M. H., Gähwiler, B. H. & Gerber, U. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 431, 453–456 (2004).
pubmed: 15386013
Vyleta, N. P., Borges-Merjane, C. & Jonas, P. Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses. eLife 5, e17977 (2016).
pubmed: 27780032 pmcid: 5079747
Lee, J. et al. Transient effect of mossy fiber stimulation on spatial firing of CA3 neurons. Hippocampus 29, 639–651 (2019).
pubmed: 30609178
Tsukamoto, M. et al. Mossy fibre synaptic NMDA receptors trigger non-Hebbian long-term potentiation at entorhino-CA3 synapses in the rat. J. Physiol. 546, 665–675 (2003).
pubmed: 12562995
McNaughton, B. L., Barnes, C. A., Meltzer, J. & Sutherland, R. J. Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge. Exp. Brain Res. 76, 485–496 (1989).
pubmed: 2792242
Buzsáki, G., Leung, L. W. & Vanderwolf, C. H. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 287, 139–171 (1983).
pubmed: 6357356
Jung, M. W. & McNaughton, B. L. Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3, 165–182 (1993).
pubmed: 8353604
Pilz, G.-A. et al. Functional imaging of dentate granule cells in the adult mouse hippocampus. J. Neurosci. 36, 7407–7414 (2016).
pubmed: 27413151 pmcid: 6705545
Senzai, Y. Function of local circuits in the hippocampal dentate gyrus–CA3 system. Neurosci. Res. 140, 43–52 (2019).
pubmed: 30408501
Chawla, M. K. et al. Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15, 579–586 (2005).
pubmed: 15920719
Deng, W., Mayford, M. & Gage, F. H. Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife 2, e00312 (2013).
pubmed: 23538967 pmcid: 3602954
Labiner, D. M. et al. Induction of c-fos mRNA by kindled seizures: complex relationship with neuronal burst firing. J. Neurosci. 13, 744–751 (1993).
pubmed: 8381172 pmcid: 6576657
Kim, S., Kim, Y., Lee, S.-H. & Ho, W.-K. Dendritic spikes in hippocampal granule cells are necessary for long-term potentiation at the perforant path synapse. eLife 7, e35269 (2018). This study, using combined dual somato-dendritic patch clamp recordings in hippocampal slices and pharmacology, demonstrates that PP long-term potentiation onto GCs requires active, NMDAR-driven dendritic events.
pubmed: 29578411 pmcid: 5896953
Ying, S.-W. et al. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 22, 1532–1540 (2002).
pubmed: 11880483 pmcid: 6758896
Nitz, D. & McNaughton, B. Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. J. Neurophysiol. 91, 863–872 (2004).
pubmed: 14523073
Diamantaki, M., Frey, M., Preston-Ferrer, P. & Burgalossi, A. Priming spatial activity by single-cell stimulation in the dentate gyrus of freely moving rats. Curr. Biol. 26, 536–541 (2016). This study, using juxtacellular recordings in freely moving rats, shows that permanent place fields in GCs can be induced by strong depolarization that would be suitable to trigger dendritic depolarization. This process is facilitated in a novel environment.
pubmed: 26853363
Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017).
pubmed: 28883072
Sheffield, M. E. J., Adoff, M. D. & Dombeck, D. A. Increased prevalence of calcium transients across the dendritic arbor during place field formation. Neuron 96, 490–504 (2017).
pubmed: 29024668 pmcid: 5642299
Marín-Burgin, A., Mongiat, L. A., Pardi, M. B. & Schinder, A. F. Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335, 1238–1242 (2012).
pubmed: 22282476 pmcid: 3385415
Schmidt-Hieber, C., Jonas, P. & Bischofberger, J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187 (2004).
pubmed: 15107864
Toni, N. & Schinder, A. F. Maturation and functional integration of new granule cells into the adult hippocampus. Cold Spring Harb. Perspect. Biol. 8, a018903 (2015).
pubmed: 26637288
Denny, C. A., Burghardt, N. S., Schachter, D. M., Hen, R. & Drew, M. R. 4- to 6-week-old adult-born hippocampal neurons influence novelty-evoked exploration and contextual fear conditioning. Hippocampus 22, 1188–1201 (2012).
pubmed: 21739523
Gu, Y. et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat. Neurosci. 15, 1700–1706 (2012).
pubmed: 23143513 pmcid: 3509272
Zhuo, J.-M. et al. Young adult born neurons enhance hippocampal dependent performance via influences on bilateral networks. eLife 5, e22429 (2016).
pubmed: 27914197 pmcid: 5156524
Alvarez, D. D. et al. A disynaptic feedback network activated by experience promotes the integration of new granule cells. Science 354, 459–465 (2016).
pubmed: 27789840
Yeh, C.-Y. et al. Mossy cells control adult neural stem cell quiescence and maintenance through a dynamic balance between direct and indirect pathways. Neuron 99, 493–510.e4 (2018).
pubmed: 30057205 pmcid: 6092757
Kumamoto, N. et al. A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat. Neurosci. 15, 399–405, S1 (2012).
pubmed: 22306608 pmcid: 3288565
Vivar, C. & van Praag, H. Functional circuits of new neurons in the dentate gyrus. Front. Neural Circuits 7, 15 (2013).
pubmed: 23443839 pmcid: 3580993
Restivo, L., Niibori, Y., Mercaldo, V., Josselyn, S. A. & Frankland, P. W. Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the hippocampus. J. Neurosci. 35, 10600–10612 (2015).
pubmed: 26203153 pmcid: 6605118
Dieni, C. V., Nietz, A. K., Panichi, R., Wadiche, J. I. & Overstreet-Wadiche, L. Distinct determinants of sparse activation during granule cell maturation. J. Neurosci. 33, 19131–19142 (2013).
pubmed: 24305810 pmcid: 3850038
Temprana, S. G. et al. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron 85, 116–130 (2015).
pubmed: 25533485
Pignatelli, M. et al. Engram cell excitability state determines the efficacy of memory retrieval. Neuron 101, 274–284.e5 (2019). This study combines cellular physiology and behavioural experiments to demonstrate that the excitability of ‘engram’ GCs that were active at memory encoding rapidly increases after re-exposure to the memorized situation and can promote subsequent retrieval of the memorized contents.
pubmed: 30551997
Scharfman, H. E. Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J. Neurosci. 11, 1660–1673 (1991).
pubmed: 2045880 pmcid: 6575404
Soltesz, I., Bourassa, J. & Deschênes, M. The behavior of mossy cells of the rat dentate gyrus during theta oscillations in vivo. Neuroscience 57, 555–564 (1993).
pubmed: 8309524
Sík, A., Coté, A. & Boldogkõi, Z. Selective spread of neurotropic herpesviruses in the rat hippocampus. J. Comp. Neurol. 496, 229–243 (2006).
pubmed: 16538677
Jung, D. et al. Dentate granule and mossy cells exhibit distinct spatiotemporal responses to local change in a one-dimensional landscape of visual–tactile cues. Sci. Rep. 9, 9545 (2019).
pubmed: 31267019 pmcid: 6606600
Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8, 45–56 (2007).
pubmed: 17180162
Hosp, J. A. et al. Morpho-physiological criteria divide dentate gyrus interneurons into classes. Hippocampus 24, 189–203 (2014).
pubmed: 24108530
Strüber, M., Sauer, J.-F., Jonas, P. & Bartos, M. Distance-dependent inhibition facilitates focality of gamma oscillations in the dentate gyrus. Nat. Commun. 8, 758 (2017).
pubmed: 28970502 pmcid: 5624961
Bartos, M. et al. Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl Acad. Sci. USA 99, 13222–13227 (2002).
pubmed: 12235359
Szabo, G. G. et al. Extended interneuronal network of the dentate gyrus. Cell Rep. 20, 1262–1268 (2017).
pubmed: 28793251 pmcid: 5576513
Savanthrapadian, S. et al. Synaptic properties of SOM- and CCK-expressing cells in dentate gyrus interneuron networks. J. Neurosci. 34, 8197–8209 (2014).
pubmed: 24920624 pmcid: 6608234
Buckmaster, P. S., Yamawaki, R. & Zhang, G. F. Axon arbors and synaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo. J. Comp. Neurol. 445, 360–373 (2002).
pubmed: 11920713
Yuan, M. et al. Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition. eLife 6, e21105 (2017).
pubmed: 28368242 pmcid: 5395294
Lee, C.-T. et al. Causal evidence for the role of specific gabaergic interneuron types in entorhinal recruitment of dentate granule cells. Sci. Rep. 6, 36885 (2016).
pubmed: 27830729 pmcid: 5103275
Stefanelli, T., Bertollini, C., Lüscher, C., Muller, D. & Mendez, P. Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron 89, 1074–1085 (2016).
pubmed: 26875623
Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).
pubmed: 15965463 pmcid: 15965463
Hargreaves, E. L., Rao, G., Lee, I. & Knierim, J. J. Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science 308, 1792–1794 (2005).
pubmed: 15961670
Høydal, Ø. A., Skytøen, E. R., Andersson, S. O., Moser, M.-B. & Moser, E. I. Object-vector coding in the medial entorhinal cortex. Nature 568, 400–404 (2019).
pubmed: 30944479
Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature 543, 719–722 (2017).
pubmed: 28358077 pmcid: 5492514
Heys, J. G. & Dombeck, D. A. Evidence for a subcircuit in medial entorhinal cortex representing elapsed time during immobility. Nat. Neurosci. 21, 1574–1582 (2018).
pubmed: 30349104 pmcid: 6352992
Miao, C. et al. Hippocampal remapping after partial inactivation of the medial entorhinal cortex. Neuron 88, 590–603 (2015).
pubmed: 26539894
Kanter, B. R. et al. A novel mechanism for the grid-to-place cell transformation revealed by transgenic depolarization of medial entorhinal cortex layer II. Neuron 93, 1480–1492.e6 (2017).
pubmed: 28334610
Schlesiger, M. I., Boublil, B. L., Hales, J. B., Leutgeb, J. K. & Leutgeb, S. Hippocampal global remapping can occur without input from the medial entorhinal cortex. Cell Rep. 22, 3152–3159 (2018).
pubmed: 29562172 pmcid: 5929481
Mallory, C. S., Hardcastle, K., Bant, J. S. & Giocomo, L. M. Grid scale drives the scale and long-term stability of place maps. Nat. Neurosci. 21, 270–282 (2018).
pubmed: 29335607 pmcid: 5823610
Diehl, G. W., Hon, O. J., Leutgeb, S. & Leutgeb, J. K. Stability of medial entorhinal cortex representations over time. Hippocampus 29, 284–302 (2019).
pubmed: 30175425
Keene, C. S. et al. Complementary functional organization of neuronal activity patterns in the perirhinal, lateral entorhinal, and medial entorhinal cortices. J. Neurosci. 36, 3660–3675 (2016).
pubmed: 27030753 pmcid: 4812128
Deshmukh, S. S. & Knierim, J. J. Representation of non-spatial and spatial information in the lateral entorhinal cortex. Front. Behav. Neurosci. 5, 69 (2011).
pubmed: 22065409 pmcid: 3203372
Tsao, A., Moser, M.-B. & Moser, E. I. Traces of experience in the lateral entorhinal cortex. Curr. Biol. 23, 399–405 (2013).
pubmed: 23434282
Wang, C. et al. Egocentric coding of external items in the lateral entorhinal cortex. Science 362, 945–949 (2018).
pubmed: 30467169 pmcid: 6261310
Tsao, A. et al. Integrating time from experience in the lateral entorhinal cortex. Nature 561, 57–62 (2018).
pubmed: 30158699
Mankin, E. A. et al. Neuronal code for extended time in the hippocampus. Proc. Natl Acad. Sci. USA 109, 19462–19467 (2012).
pubmed: 23132944
Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).
pubmed: 23396101 pmcid: 3784308
Larimer, P. & Strowbridge, B. W. Nonrandom local circuits in the dentate gyrus. J. Neurosci. 28, 12212–12223 (2008).
pubmed: 19020015 pmcid: 5546755
Ishizuka, N., Weber, J. & Amaral, D. G. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J. Comp. Neurol. 295, 580–623 (1990).
pubmed: 2358523
Wu, K., Canning, K. J. & Leung, L. S. Functional interconnections between CA3 and the dentate gyrus revealed by current source density analysis. Hippocampus 8, 217–230 (1998).
pubmed: 9662137
Hsu, T.-T., Lee, C.-T., Tai, M.-H. & Lien, C.-C. Differential recruitment of dentate gyrus interneuron types by commissural versus perforant pathways. Cereb. Cortex 26, 2715–2727 (2016).
pubmed: 26045570
Hashimotodani, Y. et al. LTP at hilar mossy cell-dentate granule cell synapses modulates dentate gyrus output by increasing excitation/inhibition balance. Neuron 95, 928–943.e3 (2017).
pubmed: 28817805 pmcid: 5609819
Buzsàki, G. & Eidelberg, E. Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition. Brain Res. 230, 346–350 (1981).
pubmed: 7317783
Myers, C. E. & Scharfman, H. E. Pattern separation in the dentate gyrus: a role for the CA3 backprojection. Hippocampus 21, 1190–1215 (2011).
pubmed: 20683841
Ylinen, A. et al. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5, 78–90 (1995).
pubmed: 7787949
Pych, J. C., Chang, Q., Colon-Rivera, C., Haag, R. & Gold, P. E. Acetylcholine release in the hippocampus and striatum during place and response training. Learn. Mem. 12, 564–572 (2005).
pubmed: 16322358 pmcid: 1356173
Giocomo, L. M. & Hasselmo, M. E. Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Mol. Neurobiol. 36, 184–200 (2007).
pubmed: 17952661
Rogers, J. L. & Kesner, R. P. Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiol. Learn. Mem. 80, 332–342 (2003).
pubmed: 14521875
Kahle, J. S. & Cotman, C. W. Carbachol depresses synaptic responses in the medial but not the lateral perforant path. Brain Res. 482, 159–163 (1989).
pubmed: 2706473
Burgard, E. C. & Sarvey, J. M. Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus. Neurosci. Lett. 116, 34–39 (1990).
pubmed: 2259453
Pabst, M. et al. Astrocyte intermediaries of septal cholinergic modulation in the hippocampus. Neuron 90, 853–865 (2016).
pubmed: 27161528
Wagatsuma, A. et al. Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context. Proc. Natl Acad. Sci. USA 115, E310–E316 (2018).
pubmed: 29279390
Takeuchi, T. et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537, 357–362 (2016).
pubmed: 27602521 pmcid: 5161591
Harley, C., Milway, J. S. & Lacaille, J. C. Locus coeruleus potentiation of dentate gyrus responses: evidence for two systems. Brain Res. Bull. 22, 643–650 (1989).
pubmed: 2544246
Yeckel, M. F. & Berger, T. W. Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proc. Natl Acad. Sci. USA 87, 5832–5836 (1990).
pubmed: 2377621
Do, V. H., Martinez, C. O., Martinez, J. L. & Derrick, B. E. Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo. J. Neurophysiol. 87, 669–678 (2002).
pubmed: 11826036
Kitamura, T. et al. Island cells control temporal association memory. Science 343, 896–901 (2014).
pubmed: 24457215 pmcid: 5572219
Kitamura, T. et al. Entorhinal cortical ocean cells encode specific contexts and drive context-specific fear memory. Neuron 87, 1317–1331 (2015). This study, using in vivo calcium imaging and optogenetic manipulations, shows that a subpopulation of MEC layer II neurons forms salient and distinct representations of different spatial contexts which are necessary for CFC learning.
pubmed: 26402611 pmcid: 5094459
Amaral, D. G., Ishizuka, N. & Claiborne, B. Neurons, numbers and the hippocampal network. Prog. Brain Res. 83, 1–11 (1990).
pubmed: 2203093
Urban, N. N., Henze, D. A. & Barrionuevo, G. Revisiting the role of the hippocampal mossy fiber synapse. Hippocampus 11, 408–417 (2001).
pubmed: 11530845
Nakashiba, T., Young, J. Z., McHugh, T. J., Buhl, D. L. & Tonegawa, S. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 319, 1260–1264 (2008).
pubmed: 18218862
Gruart, A., Sánchez-Campusano, R., Fernández-Guizán, A. & Delgado-García, J. M. A differential and timed contribution of identified hippocampal synapses to associative learning in mice. Cereb. Cortex 25, 2542–2555 (2015).
pubmed: 24654258
Rolls, E. T. The storage and recall of memories in the hippocampo-cortical system. Cell Tissue Res. 373, 577–604 (2018).
pubmed: 29218403
Lee, I. & Kesner, R. P. Encoding versus retrieval of spatial memory: double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus. Hippocampus 14, 66–76 (2004).
pubmed: 15058484
Lassalle, J. M., Bataille, T. & Halley, H. Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task. Neurobiol. Learn. Mem. 73, 243–257 (2000).
pubmed: 10775494
Kheirbek, M. A. et al. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77, 955–968 (2013).
pubmed: 23473324 pmcid: 3595120
Madroñal, N. et al. Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells. Nat. Commun. 7, 10923 (2016).
pubmed: 26988806 pmcid: 4802048
Denny, C. A. et al. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83, 189–201 (2014).
pubmed: 24991962 pmcid: 4169172
Park, S. et al. Neuronal allocation to a hippocampal engram. Neuropsychopharmacology 41, 2987–2993 (2016).
pubmed: 27187069 pmcid: 5101572
Tayler, K. K., Tanaka, K. Z., Reijmers, L. G. & Wiltgen, B. J. Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr. Biol. 23, 99–106 (2013).
pubmed: 23246402
McMahon, D. B. T. & Barrionuevo, G. Short- and long-term plasticity of the perforant path synapse in hippocampal area CA3. J. Neurophysiol. 88, 528–533 (2002).
pubmed: 12091576
Kobayashi, K. & Poo, M. Spike train timing-dependent associative modification of hippocampal CA3 recurrent synapses by mossy fibers. Neuron 41, 445–454 (2004).
pubmed: 14766182
Rebola, N., Carta, M. & Mulle, C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat. Rev. Neurosci. 18, 208–220 (2017).
pubmed: 28251990
Nakazawa, K. et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211–218 (2002).
pubmed: 12040087 pmcid: 2877140
Nakazawa, K. et al. Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron 38, 305–315 (2003).
pubmed: 12718863
Zalutsky, R. A. & Nicoll, R. A. Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248, 1619–1624 (1990).
pubmed: 2114039
Diamantaki, M. et al. Manipulating hippocampal place cell activity by single-cell stimulation in freely moving mice. Cell Rep. 23, 32–38 (2018).
pubmed: 29617670
Buzsáki, G. Two-stage model of memory trace formation: a role for ‘noisy’ brain states. Neuroscience 31, 551–570 (1989). This fundamental theoretical study postulates a two-stage memory model of memory formation involving heterosynaptic plasticity at recurrent and PP synapses by mossy-fibre input as a mechanism of initial memory storage.
pubmed: 2687720
Hagena, H. & Manahan-Vaughan, D. Learning-facilitated synaptic plasticity at CA3 mossy fiber and commissural-associational synapses reveals different roles in information processing. Cereb. Cortex 21, 2442–2449 (2011).
pubmed: 21493717 pmcid: 3183418
Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A. & Tonegawa, S. Engram cells retain memory under retrograde amnesia. Science 348, 1007–1013 (2015).
pubmed: 26023136 pmcid: 5583719
Kitamura, T. et al. Engrams and circuits crucial for systems consolidation of a memory. Science 356, 73–78 (2017).
pubmed: 28386011 pmcid: 5493329
Bernier, B. E. et al. Dentate gyrus contributes to retrieval as well as encoding: evidence from context fear conditioning, recall, and extinction. J. Neurosci. 37, 6359–6371 (2017).
pubmed: 28546308 pmcid: 5490069
Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G. & Zugaro, M. B. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009).
pubmed: 19749750
Jadhav, S. P., Kemere, C., German, P. W. & Frank, L. M. Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012).
pubmed: 22555434 pmcid: 4441285
de Almeida, L., Idiart, M. & Lisman, J. E. The input–output transformation of the hippocampal granule cells: from grid cells to place fields. J. Neurosci. 29, 7504–7512 (2009).
pubmed: 19515918 pmcid: 2747669
Marr, D. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 262, 23–81 (1971).
pubmed: 4399412
Knierim, J. J. & Neunuebel, J. P. Tracking the flow of hippocampal computation: pattern separation, pattern completion, and attractor dynamics. Neurobiol. Learn. Mem. 129, 38–49 (2016).
pubmed: 26514299
Jezek, K., Henriksen, E. J., Treves, A., Moser, E. I. & Moser, M.-B. Theta-paced flickering between place-cell maps in the hippocampus. Nature 478, 246–249 (2011).
pubmed: 21964339
Amaral, D. G. & Lavenex, P. in The Hippocampus Book (ed. Andersen, P.) 37–114 (Oxford University Press, 2007).
Fanselow, M. S. Contextual fear, gestalt memories, and the hippocampus. Behav. Brain Res. 110, 73–81 (2000).
pubmed: 10802305
Marozzi, E., Ginzberg, L. L., Alenda, A. & Jeffery, K. J. Purely translational realignment in grid cell firing patterns following nonmetric context change. Cereb. Cortex 25, 4619–4627 (2015).
pubmed: 26048956 pmcid: 4816804
Diehl, G. W., Hon, O. J., Leutgeb, S., Leutgeb, J. K. Stability of medial entorhinal cortex representations over time. Hippocampus 29, 284–302 (2019).
pubmed: 30175425
Jones, B. W. et al. Targeted deletion of AKAP7 in dentate granule cells impairs spatial discrimination. eLife 5, e20695 (2016).
pubmed: 27911261 pmcid: 5135391
Niibori, Y. et al. Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region. Nat. Commun. 3, 1253 (2012).
pubmed: 23212382 pmcid: 4931925
Marrone, D. F., Adams, A. A. & Satvat, E. Increased pattern separation in the aged fascia dentata. Neurobiol. Aging 32, 2317.e23–2317.e32 (2011).
Cravens, C. J., Vargas-Pinto, N., Christian, K. M. & Nakazawa, K. CA3 NMDA receptors are crucial for rapid and automatic representation of context memory. Eur. J. Neurosci. 24, 1771–1780 (2006).
pubmed: 17004940
Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016).
pubmed: 27251287 pmcid: 5063500
Tronel, S. et al. Adult-born neurons are necessary for extended contextual discrimination. Hippocampus 22, 292–298 (2012).
Sahay, A. et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470 (2011).
pubmed: 21460835 pmcid: 21460835
Neubrandt, M. et al. Single bursts of individual granule cells functionally rearrange feedforward inhibition. J. Neurosci. 38, 1711–1724 (2018).
pubmed: 29335356 pmcid: 5815453
Jinde, S. et al. Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76, 1189–1200 (2012).
pubmed: 23259953 pmcid: 3530172
Bui, A. D. et al. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science 359, 787–790 (2018).
pubmed: 29449490 pmcid: 6040648
Arriaga, M. & Han, E. B. Dedicated hippocampal inhibitory networks for locomotion and immobility. J. Neurosci. 37, 9222–9238 (2017).
pubmed: 28842418 pmcid: 6596740
Lovett-Barron, M. et al. Dendritic inhibition in the hippocampus supports fear learning. Science 343, 857–863 (2014).
pubmed: 24558155 pmcid: 4018419
Baker, S. et al. The human dentate gyrus plays a necessary role in discriminating new memories. Curr. Biol. 26, 2629–2634 (2016).
pubmed: 27666968
Clelland, C. D. et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213 (2009).
pubmed: 2997634 pmcid: 2997634
Morris, A. M., Churchwell, J. C., Kesner, R. P. & Gilbert, P. E. Selective lesions of the dentate gyrus produce disruptions in place learning for adjacent spatial locations. Neurobiol. Learn. Mem. 97, 326–331 (2012).
pubmed: 22390856 pmcid: 4089983
Guskjolen, A. et al. Recovery of “lost” infant memories in mice. Curr. Biol. 28, 2283–2290.e3 (2018).
pubmed: 29983316
Roy, D. S. et al. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 531, 508–512 (2016).
pubmed: 26982728 pmcid: 4847731
Burghardt, N. S., Park, E. H., Hen, R. & Fenton, A. A. Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus 22, 1795–1808 (2012).
pubmed: 22431384 pmcid: 4784987
Luna, V. M. et al. Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus. Science 364, 578–583 (2019).
pubmed: 31073064 pmcid: 6800071
Manns, J. R., Howard, M. W. & Eichenbaum, H. Gradual changes in hippocampal activity support remembering the order of events. Neuron 56, 530–540 (2007).
pubmed: 17988635 pmcid: 2104541
Mau, W. et al. The same hippocampal CA1 population simultaneously codes temporal information over multiple timescales. Curr. Biol. 28, 1499–1508.e4 (2018).
pubmed: 29706516 pmcid: 5964012
Tanaka, K. Z. et al. The hippocampal engram maps experience but not place. Science 361, 392–397 (2018).
pubmed: 30049878
Santoro, A. Reassessing pattern separation in the dentate gyrus. Front. Behav. Neurosci. 7, 96 (2013).
pubmed: 23908611 pmcid: 3726960
Leutgeb, S. et al. Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309, 619–623 (2005).
pubmed: 16040709
Bakker, A., Kirwan, C. B., Miller, M. & Stark, C. E. L. Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319, 1640–1642 (2008).
pubmed: 18356518 pmcid: 2829853
Neunuebel, J. P., Yoganarasimha, D., Rao, G. & Knierim, J. J. Conflicts between local and global spatial frameworks dissociate neural representations of the lateral and medial entorhinal cortex. J. Neurosci. 33, 9246–9258 (2013).
pubmed: 23719794 pmcid: 3747988
Lee, H., Wang, C., Deshmukh, S. S. & Knierim, J. J. Neural population evidence of functional heterogeneity along the CA3 transverse axis: pattern completion versus pattern separation. Neuron 87, 1–13 (2015).
Frederickson, R. E., Frederickson, C. J. & Danscher, G. In situ binding of bouton zinc reversibly disrupts performance on a spatial memory task. Behav. Brain Res. 38, 25–33 (1990).
pubmed: 2161241
Choi, S. H. et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361, eaan8821 (2018).
pubmed: 30190379 pmcid: 6149542
Johnson, A. & Redish, A. D. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27, 12176–12189 (2007).
pubmed: 17989284 pmcid: 6673267
Murray, A. J. et al. Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory. Nat. Neurosci. 14, 297–299 (2011).
pubmed: 21278730 pmcid: 3064406

Auteurs

Thomas Hainmueller (T)

Institute for Physiology I, Systemic and Cellular Neurophysiology, Medical Faculty, University of Freiburg, Freiburg, Germany. Thomas.Hainmueller@physiologie.uni-freiburg.de.
Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany. Thomas.Hainmueller@physiologie.uni-freiburg.de.
Faculty of Biology, University of Freiburg, Freiburg, Germany. Thomas.Hainmueller@physiologie.uni-freiburg.de.
NYU Neuroscience Institute, New York University, Langone Medical Center, New York, NY, USA. Thomas.Hainmueller@physiologie.uni-freiburg.de.

Marlene Bartos (M)

Institute for Physiology I, Systemic and Cellular Neurophysiology, Medical Faculty, University of Freiburg, Freiburg, Germany. Marlene.Bartos@physiologie.uni-freiburg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH