Attosecond pulse shaping using a seeded free-electron laser.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
02 2020
02 2020
Historique:
received:
24
05
2019
accepted:
05
11
2019
pubmed:
12
2
2020
medline:
12
2
2020
entrez:
12
2
2020
Statut:
ppublish
Résumé
Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales
Identifiants
pubmed: 32042171
doi: 10.1038/s41586-020-2005-6
pii: 10.1038/s41586-020-2005-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
386-391Références
Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).
doi: 10.1103/RevModPhys.81.163
Corkum, P. B. & Krausz, F. Attosecond science. Nat. Phys. 3, 381–387 (2007).
doi: 10.1038/nphys620
Kapteyn, H., Cohen, O., Christov, I. & Murnane, M. Harnessing attosecond science in the quest for coherent X-rays. Science 317, 775–778 (2007).
doi: 10.1126/science.1143679
Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).
doi: 10.1126/science.1059413
Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).
doi: 10.1038/nature02277
Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K. & Tsakiris, G. D. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).
doi: 10.1038/nature02091
Nabekawa, Y. et al. Interferometric autocorrelation of an attosecond pulse train in the single-cycle regime. Phys. Rev. Lett. 97, 153904 (2006).
doi: 10.1103/PhysRevLett.97.153904
López-Martens, R. et al. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94, 033001 (2005).
doi: 10.1103/PhysRevLett.94.033001
Gustafsson, E. et al. Broadband attosecond pulse shaping. Opt. Lett. 32, 1353–1355 (2007).
doi: 10.1364/OL.32.001353
Hofstetter, M. et al. Attosecond dispersion control by extreme ultraviolet multilayer mirrors. Opt. Express 19, 1767–1776 (2011).
doi: 10.1364/OE.19.001767
Bartels, R. et al. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature 406, 164–166 (2000).
doi: 10.1038/35018029
Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336–342 (2007).
doi: 10.1038/nphoton.2007.76
Emma, P. et al. First lasing and operation of an ängstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).
doi: 10.1038/nphoton.2010.176
Marinelli, A. et al. Experimental demonstration of a single-spike hard-X-ray free electron-laser starting from noise. Appl. Phys. Lett. 111, 151101 (2017).
doi: 10.1063/1.4990716
Huang, S. et al. Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Phys. Rev. Lett. 119, 154801 (2017).
doi: 10.1103/PhysRevLett.119.154801
Hartmann, N. et al. Attosecond time–energy structure of X-ray free-electron laser pulses. Nat. Photon. 12, 215–220 (2018).
doi: 10.1038/s41566-018-0107-6
Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).
doi: 10.1038/nphoton.2012.233
Mairesse, Y. et al. Attosecond synchronization of high-harmonic soft X-rays. Science 302, 1540–1543 (2003).
doi: 10.1126/science.1090277
Schulz, S. et al. Femtosecond all-optical synchronisation of an X-ray free-electron laser. Nat. Commun. 6, 5938 (2015).
doi: 10.1038/ncomms6938
Danailov, M. B. et al. Towards jitter-free pump-probe measurements at seeded free electron laser facilities. Opt. Express 22, 12869–12879 (2014).
doi: 10.1364/OE.22.012869
Prince, K. C. et al. Coherent control with a short-wavelength free-electron laser. Nat. Photon. 10, 176–179 (2016).
doi: 10.1038/nphoton.2016.13
Iablonskyi, D. et al. Observation and control of laser-enabled Auger decay. Phys. Rev. Lett. 119, 073203 (2017).
doi: 10.1103/PhysRevLett.119.073203
Takahashi, E. J. et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 4, 2691 (2013).
doi: 10.1038/ncomms3691
Nayak, A. et al. Multiple ionization of argon via multi-XUV-photon absorption induced by 20-GW high-order harmonic laser pulses. Phys. Rev. A 98, 023426 (2018).
doi: 10.1103/PhysRevA.98.023426
Zholents, A. A. Method of an enhanced self-amplified spontaneous emission for x-ray free electron lasers. Phys. Rev. Spec. Top. Accel. Beams 8, 040701 (2005).
doi: 10.1103/PhysRevSTAB.8.040701
Thompson, N. R. & McNeil, B. W. J. Mode locking in a free-electron laser amplifier. Phys. Rev. Lett. 100, 203901 (2008).
doi: 10.1103/PhysRevLett.100.203901
Ribič, P. R. et al. Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser. Nat. Photon. 13, 555–561 (2019).
doi: 10.1038/s41566-019-0427-1
Hemsing, E. et al. Soft X-ray FEL Seeding Studies for LCLS-II: Task Force Status Report. A White Paper by SLAC and LBNL. Technical Note SLAC-TN-19-001 (SLAC, 2019); available at https://www.slac.stanford.edu/pubs/slactns/tn06/slac-tn-19-001.pdf (2019).
Grattoni, V. et al. Status of seeding development at sFLASH. In Proc. FEL2017 (eds Bishofberger, K., Carlsten, B. & Schaa, V. R. W.) 136–139 (JACoW, 2018).
Zhao, Z. et al. Status of the SXFEL facility. Appl. Sci. 7, 607 (2017).
doi: 10.3390/app7060607
Yong, Y. et al. Dalian extreme ultraviolet coherent light source. Chin. J. Lasers 46, 0100005 (2019).
doi: 10.3788/CJL201946.0100005
Finetti, P. et al. Pulse duration of seeded free-electron lasers. Phys. Rev. X 7, 021043 (2017).
Zangrando, M. et al. Recent results of PADReS, the Photon Analysis Delivery and REduction System, from the FERMI FEL commissioning and user operations. J. Synchr. Rad. 22, 565–570 (2015).
doi: 10.1107/S1600577515004580
Reiche, S. Update on the FEL code GENESIS 1.3. In Proc. 36th Int. Free Electron Laser Conf. (FEL’14) (eds Chrin, J., Reiche, S. & Schaa, V. R. W.) TUP019, 403–407 (JACoW, 2014).