Genetic Up-Regulation or Pharmacological Activation of the Na
Animals
Behavior, Animal
/ drug effects
Calcium
/ metabolism
Calcium-Calmodulin-Dependent Protein Kinase Type 2
/ metabolism
Cell Line
Cricetinae
Gene Knock-In Techniques
HEK293 Cells
Hippocampus
/ metabolism
Humans
Ion Transport
/ drug effects
Male
Mesocricetus
Mice
Mice, Inbred C57BL
Patch-Clamp Techniques
Phosphorylation
Protein Processing, Post-Translational
/ drug effects
Recognition, Psychology
/ drug effects
Recombinant Proteins
/ metabolism
Sodium
/ metabolism
Sodium-Calcium Exchanger
/ agonists
Spatial Learning
/ drug effects
Spatial Memory
/ drug effects
Up-Regulation
/ drug effects
Anxiety
Drug discovery
Long-term memory
Synaptic plasticity
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
May 2020
May 2020
Historique:
received:
25
10
2019
accepted:
29
01
2020
pubmed:
13
2
2020
medline:
4
2
2021
entrez:
13
2
2020
Statut:
ppublish
Résumé
The Na
Identifiants
pubmed: 32048166
doi: 10.1007/s12035-020-01888-4
pii: 10.1007/s12035-020-01888-4
doi:
Substances chimiques
NCX1 protein, mouse
0
Recombinant Proteins
0
Sodium-Calcium Exchanger
0
Sodium
9NEZ333N27
Calcium-Calmodulin-Dependent Protein Kinase Type 2
EC 2.7.11.17
Calcium
SY7Q814VUP
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2358-2376Subventions
Organisme : MIUR
ID : RBFR13M6FN
Organisme : MIUR
ID : 2015BEX2BR_003
Organisme : MIUR
ID : 2017WJZ9W9_004
Organisme : MIUR
ID : PON_01602
Organisme : MIUR
ID : PON03PE_00146_1
Organisme : Regione Campania
ID : B25C13000280007
Organisme : Regione Campania
ID : B25C1300024007
Références
Nicoll DA, Longoni S, Philipson KD (1990) Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science 250(4980):562–565
doi: 10.1126/science.1700476
Nicoll DA, Quednau BD, Qui Z, Xia YR, Lusis AJ, Philipson KD (1996) Cloning of a third mammalian Na+–Ca2+ exchanger, NCX3. J Biol Chem 271(40):24914–24921
doi: 10.1074/jbc.271.40.24914
Li Z, Matsuoka S, Hryshko LV, Nicoll DA, Bersohn MM, Burke EP, Lifton RP, Philipson KD (1994) Cloning of the NCX2 isoform of the plasma membrane Na(+)–Ca2+ exchanger. J Biol Chem 269(26):17434–17439
pubmed: 8021246
Papa M, Canitano A, Boscia F, Castaldo P, Sellitti S, Porzig H, Taglialatela M, Annunziato L (2003) Differential expression of the Na+–Ca2+ exchanger transcripts and proteins in rat brain regions. J Comp Neurol 461(1):31–48. https://doi.org/10.1002/cne.10665
doi: 10.1002/cne.10665
pubmed: 12722103
Canitano A, Papa M, Boscia F, Castaldo P, Sellitti S, Taglialatela M, Annunziato L (2002) Brain distribution of the Na+/Ca2+ exchanger-encoding genes NCX1, NCX2, and NCX3 and their related proteins in the central nervous system. Ann N Y Acad Sci 976:394–404
doi: 10.1111/j.1749-6632.2002.tb04766.x
Linck B, Qiu Z, He Z, Tong Q, Hilgemann DW, Philipson KD (1998) Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3). Am J Phys 274(2 Pt 1):C415–C423
doi: 10.1152/ajpcell.1998.274.2.C415
Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79(3):763–854
doi: 10.1152/physrev.1999.79.3.763
Jeon D, Yang YM, Jeong MJ, Philipson KD, Rhim H, Shin HS (2003) Enhanced learning and memory in mice lacking Na+/Ca2+ exchanger 2. Neuron 38(6):965–976
doi: 10.1016/S0896-6273(03)00334-9
Molinaro P, Viggiano D, Nistico R, Sirabella R, Secondo A, Boscia F, Pannaccione A, Scorziello A et al (2011) Na+–Ca2+ exchanger (NCX3) knock-out mice display an impairment in hippocampal long-term potentiation and spatial learning and memory. J Neurosci 31(20):7312–7321. https://doi.org/10.1523/JNEUROSCI.6296-10.2011
doi: 10.1523/JNEUROSCI.6296-10.2011
pubmed: 21593315
pmcid: 6622590
Secondo A, Esposito A, Petrozziello T, Boscia F, Molinaro P, Tedeschi V, Pannaccione A, Ciccone R et al (2018) Na+/Ca2+ exchanger 1 on nuclear envelope controls PTEN/Akt pathway via nucleoplasmic Ca2+ regulation during neuronal differentiation. Cell Death Discov 4:12. https://doi.org/10.1038/s41420-017-0018-1
doi: 10.1038/s41420-017-0018-1
pubmed: 29531809
pmcid: 5841316
Molinaro P, Cataldi M, Cuomo O, Viggiano D, Pignataro G, Sirabella R, Secondo A, Boscia F et al (2013) Genetically modified mice as a strategy to unravel the role played by the Na(+)/Ca(2+) exchanger in brain ischemia and in spatial learning and memory deficits. Adv Exp Med Biol 961:213–222. https://doi.org/10.1007/978-1-4614-4756-6_18
doi: 10.1007/978-1-4614-4756-6_18
pubmed: 23224882
Formisano L, Guida N, Valsecchi V, Pignataro G, Vinciguerra A, Pannaccione A, Secondo A, Boscia F et al (2013) NCX1 is a new rest target gene: role in cerebral ischemia. Neurobiol Dis 50:76–85. https://doi.org/10.1016/j.nbd.2012.10.010
doi: 10.1016/j.nbd.2012.10.010
pubmed: 23069678
Sirabella R, Secondo A, Pannaccione A, Molinaro P, Formisano L, Guida N, Di Renzo G, Annunziato L et al (2012) ERK1/2, p38, and JNK regulate the expression and the activity of the three isoforms of the Na+/Ca2+ exchanger, NCX1, NCX2, and NCX3, in neuronal PC12 cells. J Neurochem 122(5):911–922. https://doi.org/10.1111/j.1471-4159.2012.07838.x
doi: 10.1111/j.1471-4159.2012.07838.x
pubmed: 22708976
Formisano L, Saggese M, Secondo A, Sirabella R, Vito P, Valsecchi V, Molinaro P, Di Renzo G et al (2008) The two isoforms of the Na+/Ca2+ exchanger, NCX1 and NCX3, constitute novel additional targets for the prosurvival action of Akt/protein kinase B pathway. Mol Pharmacol 73(3):727–737. https://doi.org/10.1124/mol.107.042549
doi: 10.1124/mol.107.042549
pubmed: 18079274
Secondo A, Molinaro P, Pannaccione A, Esposito A, Cantile M, Lippiello P, Sirabella R, Iwamoto T et al (2011) Nitric oxide stimulates NCX1 and NCX2 but inhibits NCX3 isoform by three distinct molecular determinants. Mol Pharmacol 79(3):558–568. https://doi.org/10.1124/mol.110.069658
doi: 10.1124/mol.110.069658
pubmed: 21159997
Secondo A, Staiano RI, Scorziello A, Sirabella R, Boscia F, Adornetto A, Valsecchi V, Molinaro P et al (2007) BHK cells transfected with NCX3 are more resistant to hypoxia followed by reoxygenation than those transfected with NCX1 and NCX2: possible relationship with mitochondrial membrane potential. Cell Calcium 42(6):521–535. https://doi.org/10.1016/j.ceca.2007.01.006
doi: 10.1016/j.ceca.2007.01.006
pubmed: 17343909
Annunziato L, Pignataro G, Di Renzo GF (2004) Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol Rev 56(4):633–654. https://doi.org/10.1124/pr.56.4.5
doi: 10.1124/pr.56.4.5
pubmed: 15602012
Cuomo O, Pignataro G, Sirabella R, Molinaro P, Anzilotti S, Scorziello A, Sisalli MJ, Di Renzo G et al (2016) Sumoylation of LYS590 of NCX3 f-loop by SUMO1 participates in brain neuroprotection induced by ischemic preconditioning. Stroke 47(4):1085–1093. https://doi.org/10.1161/STROKEAHA.115.012514
doi: 10.1161/STROKEAHA.115.012514
pubmed: 26979866
Molinaro P, Pannaccione A, Sisalli MJ, Secondo A, Cuomo O, Sirabella R, Cantile M, Ciccone R et al (2015) A new cell-penetrating peptide that blocks the autoinhibitory XIP domain of NCX1 and enhances antiporter activity. Mol Ther 23(3):465–476. https://doi.org/10.1038/mt.2014.231
doi: 10.1038/mt.2014.231
pubmed: 25582710
pmcid: 4351459
Scorziello A, Savoia C, Sisalli MJ, Adornetto A, Secondo A, Boscia F, Esposito A, Polishchuk EV et al (2013) NCX3 regulates mitochondrial Ca(2+) handling through the AKAP121-anchored signaling complex and prevents hypoxia-induced neuronal death. J Cell Sci 126(Pt 24):5566–5577. https://doi.org/10.1242/jcs.129668
doi: 10.1242/jcs.129668
pubmed: 24101730
Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S et al (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846. https://doi.org/10.1016/j.cell.2006.10.030
doi: 10.1016/j.cell.2006.10.030
pubmed: 17110340
Juhaszova M, Shimizu H, Borin ML, Yip RK, Santiago EM, Lindenmayer GE, Blaustein MP (1996) Localization of the Na(+)–Ca2+ exchanger in vascular smooth muscle, and in neurons and astrocytes. Ann N Y Acad Sci 779:318–335
doi: 10.1111/j.1749-6632.1996.tb44804.x
Kiedrowski L, Brooker G, Costa E, Wroblewski JT (1994) Glutamate impairs neuronal calcium extrusion while reducing sodium gradient. Neuron 12(2):295–300
doi: 10.1016/0896-6273(94)90272-0
Ranciat-McComb NS, Bland KS, Huschenbett J, Ramonda L, Bechtel M, Zaidi A, Michaelis ML (2000) Antisense oligonucleotide suppression of Na(+)/Ca(2+) exchanger activity in primary neurons from rat brain. Neurosci Lett 294(1):13–16
doi: 10.1016/S0304-3940(00)01524-X
Reuter H, Porzig H (1995) Localization and functional significance of the Na+/Ca2+ exchanger in presynaptic boutons of hippocampal cells in culture. Neuron 15(5):1077–1084
doi: 10.1016/0896-6273(95)90096-9
Bouron A, Reuter H (1996) A role of intracellular Na+ in the regulation of synaptic transmission and turnover of the vesicular pool in cultured hippocampal cells. Neuron 17(5):969–978
doi: 10.1016/S0896-6273(00)80227-5
Sanchez-Armass S, Blaustein MP (1987) Role of sodium–calcium exchange in regulation of intracellular calcium in nerve terminals. Am J Phys 252(6 Pt 1):C595–C603
doi: 10.1152/ajpcell.1987.252.6.C595
Molinaro P, Sirabella R, Pignataro G, Petrozziello T, Secondo A, Boscia F, Vinciguerra A, Cuomo O et al (2016) Neuronal NCX1 overexpression induces stroke resistance while knockout induces vulnerability via Akt. J Cereb Blood Flow Metab 36(10):1790–1803. https://doi.org/10.1177/0271678X15611913
doi: 10.1177/0271678X15611913
pubmed: 26661211
Secondo A, Esposito A, Sirabella R, Boscia F, Pannaccione A, Molinaro P, Cantile M, Ciccone R et al (2015) Involvement of the Na+/Ca2+ exchanger isoform 1 (NCX1) in neuronal growth factor (NGF)-induced neuronal differentiation through Ca2+-dependent Akt phosphorylation. J Biol Chem 290(3):1319–1331. https://doi.org/10.1074/jbc.M114.555516
doi: 10.1074/jbc.M114.555516
pubmed: 25416782
Secondo A, Pannaccione A, Molinaro P, Ambrosino P, Lippiello P, Esposito A, Cantile M, Khatri PR et al (2009) Molecular pharmacology of the amiloride analog 3-amino-6-chloro-5- (4-chloro-benzyl)amino-N-(2,4-dimethylbenzyl)aminoiminomethyl-pyrazinecarboxamide (CB-DMB) as a pan inhibitor of the Na(+)–Ca(2+) exchanger isoforms NCX1, NCX2, and NCX3 in stably transfected cells. J Pharmacol Exp Ther 331(1):212–221. https://doi.org/10.1124/jpet.109.152132
doi: 10.1124/jpet.109.152132
pubmed: 19602550
Secondo A, Pignataro G, Ambrosino P, Pannaccione A, Molinaro P, Boscia F, Cantile M, Cuomo O et al (2015) Pharmacological characterization of the newly synthesized 5-amino-N-butyl-2-(4-ethoxyphenoxy)-benzamide hydrochloride (BED) as a potent NCX3 inhibitor that worsens anoxic injury in cortical neurons, organotypic hippocampal cultures, and ischemic brain. ACS Chem Neurosci 6(8):1361–1370. https://doi.org/10.1021/acschemneuro.5b00043
doi: 10.1021/acschemneuro.5b00043
pubmed: 25942323
Molinaro P, Cantile M, Cuomo O, Secondo A, Pannaccione A, Ambrosino P, Pignataro G, Fiorino F et al (2013) Neurounina-1, a novel compound that increases Na+/Ca2+ exchanger activity, effectively protects against stroke damage. Mol Pharmacol 83(1):142–156. https://doi.org/10.1124/mol.112.080986
doi: 10.1124/mol.112.080986
pubmed: 23066092
Gunthorpe MJ, Smith GD, Davis JB, Randall AD (2001) Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells. Pflugers Arch 442(5):668–674
doi: 10.1007/s004240100584
Severino B, Fiorino F, Perissutti E, Frecentese F, Cirino G, Roviezzo F, Santagada V, Caliendo G (2008) Synthesis and pharmacological evaluation of peptide-mimetic protease-activated receptor-1 antagonists containing novel heterocyclic scaffolds. Bioorg Med Chem 16(11):6009–6020. https://doi.org/10.1016/j.bmc.2008.04.059
doi: 10.1016/j.bmc.2008.04.059
pubmed: 18477511
Molinaro P, Cuomo O, Pignataro G, Boscia F, Sirabella R, Pannaccione A, Secondo A, Scorziello A et al (2008) Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J Neurosci 28(5):1179–1184. https://doi.org/10.1523/jneurosci.4671-07.2008
doi: 10.1523/jneurosci.4671-07.2008
pubmed: 18234895
pmcid: 6671397
Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450
pubmed: 3838314
Anzilotti S, Tornincasa M, Gerlini R, Conte A, Brancaccio P, Cuomo O, Bianco G, Fusco A et al (2015) Genetic ablation of homeodomain-interacting protein kinase 2 selectively induces apoptosis of cerebellar Purkinje cells during adulthood and generates an ataxic-like phenotype. Cell Death Dis 6:e2004. https://doi.org/10.1038/cddis.2015.298
doi: 10.1038/cddis.2015.298
pubmed: 26633710
pmcid: 4720876
Anzilotti S, Brancaccio P, Simeone G, Valsecchi V, Vinciguerra A, Secondo A, Petrozziello T, Guida N et al (2018) Preconditioning, induced by sub-toxic dose of the neurotoxin L-BMAA, delays ALS progression in mice and prevents Na. Cell Death Dis 9(2):206. https://doi.org/10.1038/s41419-017-0227-9
doi: 10.1038/s41419-017-0227-9
pubmed: 29434186
pmcid: 5833681
Giampà C, Laurenti D, Anzilotti S, Bernardi G, Menniti FS, Fusco FR (2010) Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington’s disease. PLoS One 5(10):e13417. https://doi.org/10.1371/journal.pone.0013417
doi: 10.1371/journal.pone.0013417
pubmed: 20976216
pmcid: 2955524
Bach ME, Hawkins RD, Osman M, Kandel ER, Mayford M (1995) Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell 81(6):905–915
doi: 10.1016/0092-8674(95)90010-1
Seeger T, Fedorova I, Zheng F, Miyakawa T, Koustova E, Gomeza J, Basile AS, Alzheimer C et al (2004) M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci 24(45):10117–10127. https://doi.org/10.1523/JNEUROSCI.3581-04.2004
doi: 10.1523/JNEUROSCI.3581-04.2004
pubmed: 15537882
pmcid: 6730182
McEchron MD, Bouwmeester H, Tseng W, Weiss C, Disterhoft JF (1998) Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. Hippocampus 8(6):638–646. https://doi.org/10.1002/(SICI)1098-1063(1998)8:6<638::AID-HIPO6>3.0.CO;2-Q
doi: 10.1002/(SICI)1098-1063(1998)8:6<638::AID-HIPO6>3.0.CO;2-Q
pubmed: 9882021
Desmedt A, Marighetto A, Garcia R, Jaffard R (2003) The effects of ibotenic hippocampal lesions on discriminative fear conditioning to context in mice: Impairment or facilitation depending on the associative value of a phasic explicit cue. Eur J Neurosci 17(9):1953–1963
doi: 10.1046/j.1460-9568.2003.02615.x
Bangasser DA, Waxler DE, Santollo J, Shors TJ (2006) Trace conditioning and the hippocampus: the importance of contiguity. J Neurosci 26(34):8702–8706. https://doi.org/10.1523/JNEUROSCI.1742-06.2006
doi: 10.1523/JNEUROSCI.1742-06.2006
pubmed: 16928858
pmcid: 3289537
Huerta PT, Sun LD, Wilson MA, Tonegawa S (2000) Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron 25(2):473–480
doi: 10.1016/S0896-6273(00)80909-5
D'Adamo P, Welzl H, Papadimitriou S, Raffaele di Barletta M, Tiveron C, Tatangelo L, Pozzi L, Chapman PF et al (2002) Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Hum Mol Genet 11(21):2567–2580
doi: 10.1093/hmg/11.21.2567
Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, Roder JC (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 17(13):5196–5205
doi: 10.1523/JNEUROSCI.17-13-05196.1997
Leng TD, Si HF, Li J, Yang T, Zhu M, Wang B, Simon RP, Xiong ZG (2016) Amiloride analogs as ASIC1a inhibitors. CNS Neurosci Ther 22(6):468–476. https://doi.org/10.1111/cns.12524
doi: 10.1111/cns.12524
pubmed: 26890278
pmcid: 4996284
Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH, Welsh MJ (2003) Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci 23(13):5496–5502
doi: 10.1523/JNEUROSCI.23-13-05496.2003
Aissouni Y, El Guerrab A, Hamieh AM, Ferrier J, Chalus M, Lemaire D, Grégoire S, Etienne M et al (2017) Acid-sensing ion channel 1a in the amygdala is involved in pain and anxiety-related behaviours associated with arthritis. Sci Rep 7:43617. https://doi.org/10.1038/srep43617
doi: 10.1038/srep43617
pubmed: 28321113
pmcid: 5340794
Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13(3):169–182. https://doi.org/10.1038/nrn3192
doi: 10.1038/nrn3192
pubmed: 22334212
pmcid: 4050655
Sheng M, Thompson MA, Greenberg ME (1991) CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252(5011):1427–1430. https://doi.org/10.1126/science.1646483
doi: 10.1126/science.1646483
pubmed: 1646483
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496. https://doi.org/10.1124/pr.109.002451
doi: 10.1124/pr.109.002451
pubmed: 20716669
pmcid: 2964903
O’Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48(7):647–653. https://doi.org/10.1016/j.exger.2013.02.025
doi: 10.1016/j.exger.2013.02.025
Moriguchi S, Kita S, Fukaya M, Osanai M, Inagaki R, Sasaki Y, Izumi H, Horie K et al (2018) Reduced expression of Na(+)/Ca(2+) exchangers is associated with cognitive deficits seen in Alzheimer’s disease model mice. Neuropharmacology 131:291–303. https://doi.org/10.1016/j.neuropharm.2017.12.037
doi: 10.1016/j.neuropharm.2017.12.037
pubmed: 29274751
Silva AJ, Stevens CF, Tonegawa S, Wang Y (1992) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257(5067):201–206. https://doi.org/10.1126/science.1378648
doi: 10.1126/science.1378648
pubmed: 1378648
Mayford M, Wang J, Kandel ER, O'Dell TJ (1995) CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell 81(6):891–904. https://doi.org/10.1016/0092-8674(95)90009-8
doi: 10.1016/0092-8674(95)90009-8
pubmed: 7781066
Li XF, Kiedrowski L, Tremblay F, Fernandez FR, Perizzolo M, Winkfein RJ, Turner RW, Bains JS et al (2006) Importance of K+-dependent Na+/Ca2+-exchanger 2, NCKX2, in motor learning and memory. J Biol Chem 281(10):6273–6282. https://doi.org/10.1074/jbc.M512137200
doi: 10.1074/jbc.M512137200
pubmed: 16407245
Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13(2):167–170
doi: 10.1016/0091-3057(80)90067-2
Hasegawa S, Furuichi T, Yoshida T, Endoh K, Kato K, Sado M, Maeda R, Kitamoto A et al (2009) Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression. Mol Brain 2:6. https://doi.org/10.1186/1756-6606-2-6
doi: 10.1186/1756-6606-2-6
pubmed: 19257910
pmcid: 2660323
Jeffery KJ (2007) Integration of the sensory inputs to place cells: what, where, why, and how? Hippocampus 17(9):775–785. https://doi.org/10.1002/hipo.20322
doi: 10.1002/hipo.20322
pubmed: 17615579
Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, Zhou P, Ong SK et al (2018) Anxiety cells in a hippocampal–hypothalamic circuit. Neuron 97(3):670–683.e676. https://doi.org/10.1016/j.neuron.2018.01.016
doi: 10.1016/j.neuron.2018.01.016
pubmed: 29397273
pmcid: 5877404
Dustrude ET, Caliman IF, Bernabe CS, Fitz SD, Grafe LA, Bhatnagar S, Bonaventure P, Johnson PL et al (2018) Orexin depolarizes central amygdala neurons via orexin receptor 1, phospholipase C and sodium-calcium exchanger and modulates conditioned fear. Front Neurosci 12:934. https://doi.org/10.3389/fnins.2018.00934
doi: 10.3389/fnins.2018.00934
pubmed: 30618563
pmcid: 6305451