microRNA-378a-5p iS a novel positive regulator of melanoma progression.


Journal

Oncogenesis
ISSN: 2157-9024
Titre abrégé: Oncogenesis
Pays: United States
ID NLM: 101580004

Informations de publication

Date de publication:
14 Feb 2020
Historique:
received: 06 08 2019
accepted: 24 01 2020
revised: 20 01 2020
entrez: 16 2 2020
pubmed: 16 2 2020
medline: 16 2 2020
Statut: epublish

Résumé

Evaluating the expression levels of miR-378a-5p both in a large melanoma patient cohort from The Cancer Genome Atlas database and in melanoma patients from our Institute, we found that miR-378a-5p is upregulated in metastatic melanoma specimens. miR-378a-5p expression was also increased in melanoma cells resistant to target therapy, and decreased in response to drug treatment. We also demonstrated that overexpression of miR-378a-5p enhances in vitro cell invasion and migration, and facilitates the ability of melanoma cells to form de novo vasculogenic structures. While performing downstream targeting studies, we confirmed the ability of miR-378a-5p to modulate the expression of known target genes, such as SUFU, FUS-1, and KLF9. Luciferase-3'UTR experiments also identified STAMBP and HOXD10 as new miR-378a-5p target genes. MMP2 and uPAR, two HOXD10 target genes, were positively regulated by miR-378a-5p. Genetic and pharmacologic approaches inhibiting uPAR expression and activity evidenced that the in vitro tumor-promoting functions of miR-378a-5p, were in part mediated by uPAR. Of note miR-378a-5p was also able to increase VEGF, as well as in vitro and in vivo angiogenesis. Finally, genetic and pharmacologic modulation of Bcl-2 evidenced Bcl-2 ability to regulate miR-378a-5p expression. In conclusion, to the best of our knowledge, this is the first study demonstrating that miR-378a-5p acts as an oncogenic microRNA in melanoma.

Identifiants

pubmed: 32060259
doi: 10.1038/s41389-020-0203-6
pii: 10.1038/s41389-020-0203-6
pmc: PMC7021836
doi:

Types de publication

Journal Article

Langues

eng

Pagination

22

Subventions

Organisme : Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
ID : IG 18560

Références

Mirzaei, H. et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur. J. Cancer 53, 25–32 (2016).
pubmed: 26693896 doi: 10.1016/j.ejca.2015.10.009
De Luca, T. et al. miR-211 and MITF modulation by Bcl-2 protein in melanoma cells. Mol. Carcinogenesis 55, 2304–2312 (2016).
doi: 10.1002/mc.22437
Fattore, L. et al. miR-579-3p controls melanoma progression and resistance to target therapy. Proc. Natl Acad. Sci. USA 113, E5005–E5013 (2016).
pubmed: 27503895 doi: 10.1073/pnas.1607753113
Ciuffreda, L. et al. The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms. J. Mol. Med. (Berl.) 90, 667–679 (2012).
doi: 10.1007/s00109-011-0844-1
Krist, B., Florczyk, U., Pietraszek-Gremplewicz, K., Jozkowicz, A. & Dulak, J. The role of miR-378a in metabolism, angiogenesis, and muscle biology. Int. J. Endocrinol. 2015, 281756 (2015).
pubmed: 26839547 pmcid: 4709675 doi: 10.1155/2015/281756
Sun, M. et al. MicroRNA-378 regulates epithelial-mesenchymal transition and metastasis of melanoma by inhibiting FOXN3 expression through the Wnt/beta-catenin pathway. Cell Biol. Int. 43, 1113–1124 (2019).
pubmed: 29972255 doi: 10.1002/cbin.11027
Velazquez-Torres, G. et al. A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. Nat. Commun. 9, 461 (2018). 461-018-02851-7.
pubmed: 29386624 pmcid: 5792646 doi: 10.1038/s41467-018-02851-7
Yao, Y. et al. MicroRNA profiling of human gastric cancer. Mol. Med. Rep. 2, 963–970 (2009).
pubmed: 21475928
Scapoli, L. et al. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int. J. Immunopathol. Pharm. 23, 1229–1234 (2010).
doi: 10.1177/039463201002300427
Wang, Y. X. et al. Initial study of microRNA expression profiles of colonic cancer without lymph node metastasis. J. Dig. Dis. 11, 50–54 (2010).
pubmed: 20132431 doi: 10.1111/j.1751-2980.2009.00413.x
Redova, M. et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J. Transl. Med 10, 55 (2012). 55-5876-10-55.
pubmed: 22440013 pmcid: 3340316 doi: 10.1186/1479-5876-10-55
Qian, J. et al. Overexpression of miR-378 is frequent and may affect treatment outcomes in patients with acute myeloid leukemia. Leuk. Res 37, 765–768 (2013).
pubmed: 23582927 doi: 10.1016/j.leukres.2013.03.014
Chen, L. T. et al. MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis. Med. Oncol. 29, 1673–1680 (2012).
pubmed: 22052152 doi: 10.1007/s12032-011-0083-x
Lee, D. Y., Deng, Z., Wang, C. H. & Yang, B. B. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc. Natl Acad. Sci. USA 104, 20350–20355 (2007).
pubmed: 18077375 doi: 10.1073/pnas.0706901104
Winsel, S. et al. Excess of miRNA-378a-5p perturbs mitotic fidelity and correlates with breast cancer tumourigenesis in vivo. Br. J. Cancer 111, 2142–2151 (2014).
pubmed: 25268374 pmcid: 4260036 doi: 10.1038/bjc.2014.524
Nadeem, U., Ye, G., Salem, M. & Peng, C. MicroRNA-378a-5p targets cyclin G2 to inhibit fusion and differentiation in BeWo cells. Biol. Reprod. 91, 76 (2014).
pubmed: 25122062 doi: 10.1095/biolreprod.114.119065
Kooistra, S. M. et al. A screen identifies the oncogenic micro-RNA miR-378a-5p as a negative regulator of oncogene-induced senescence. PLoS ONE 9, e91034 (2014).
pubmed: 24651706 pmcid: 3961217 doi: 10.1371/journal.pone.0091034
Xu, S., Linher-Melville, K., Yang, B. B., Wu, D. & Li, J. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology 152, 3941–3951 (2011).
pubmed: 21846797 pmcid: 3176644 doi: 10.1210/en.2011-1147
Xing, Y. et al. microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res. Ther. 5, 130 (2014).
pubmed: 25418617 pmcid: 4446090 doi: 10.1186/scrt520
Wang, Z. et al. MicroRNA-378-5p suppresses cell proliferation and induces apoptosis in colorectal cancer cells by targeting BRAF. Cancer Cell Int. 15, 40 (2015). 40-015-0192-2. eCollection 2015.
pubmed: 25977643 pmcid: 4431608 doi: 10.1186/s12935-015-0192-2
Pan, X. et al. MiR-378a-5p acts as a tumor suppressor in renal cell carcinoma and is associated with the good prognosis of patients. Am. J. Transl. Res. 11, 2207–2218 (2019).
pubmed: 31105829 pmcid: 6511777
Fattore, L. et al. Reprogramming miRNAs global expression orchestrates development of drug resistance in BRAF mutated melanoma. Cell Death Differ. 26, 1267–1282 (2019).
pubmed: 30254376 doi: 10.1038/s41418-018-0205-5
Peng, N. et al. MiR-378 promotes the cell proliferation of osteosarcoma through down-regulating the expression of Kruppel-like factor 9. Biochem. Cell Biol. 96, 515–521 (2018).
pubmed: 29490146 doi: 10.1139/bcb-2017-0186
Gungormez, C., Gumushan Aktas, H., Dilsiz, N. & Borazan, E. Novel miRNAs as potential biomarkers in stage II colon cancer: microarray analysis. Mol. Biol. Rep. 4, 4175–4183 (2019).
doi: 10.1007/s11033-019-04868-7
Ma, J. et al. MiR-378 promotes the migration of liver cancer cells by down-regulating Fus expression. Cell Physiol. Biochem 34, 2266–2274 (2014).
pubmed: 25562172 doi: 10.1159/000369669
Hendrix, M. J., Seftor, E. A., Hess, A. R. & Seftor, R. E. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat. Rev. Cancer 3, 411–421 (2003).
pubmed: 12778131 doi: 10.1038/nrc1092
Hua, Z. et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE 1, e116 (2006).
pubmed: 17205120 pmcid: 1762435 doi: 10.1371/journal.pone.0000116
Skrzypek, K. et al. Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis. Antioxid. Redox Signal 19, 644–660 (2013).
pubmed: 23617628 pmcid: 3740397 doi: 10.1089/ars.2013.5184
Tang, J. et al. cRGD inhibits vasculogenic mimicry formation by down-regulating uPA expression and reducing EMT in ovarian cancer. Oncotarget 7, 24050–24062 (2016).
pubmed: 26992227 pmcid: 5029683
Zannetti, A. et al. Inhibition of Sp1 activity by a decoy PNA-DNA chimera prevents urokinase receptor expression and migration of breast cancer cells. Biochem. Pharm. 70, 1277–1287 (2005).
pubmed: 16143315 doi: 10.1016/j.bcp.2005.07.024
Myers, C., Charboneau, A., Cheung, I., Hanks, D. & Boudreau, N. Sustained expression of homeobox D10 inhibits angiogenesis. Am. J. Pathol. 161, 2099–2109 (2002).
pubmed: 12466126 pmcid: 1850921 doi: 10.1016/S0002-9440(10)64488-4
Sun, L. et al. MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Res. 1389, 9–18 (2011).
pubmed: 21419107 doi: 10.1016/j.brainres.2011.03.013
Laurenzana, A. et al. EGFR/uPAR interaction as druggable target to overcome vemurafenib acquired resistance in melanoma cells. EBioMedicine 39, 194–206 (2019).
pubmed: 30611716 pmcid: 6355443 doi: 10.1016/j.ebiom.2018.12.024
Chilla, A. et al. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis. J. Exp. Clin. Cancer Res. 37, 74 (2018). 74-018-0742-2.
pubmed: 29615071 pmcid: 5883600 doi: 10.1186/s13046-018-0742-2
Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013).
pubmed: 23291630 doi: 10.1038/nm.3048
Hendrix, M. J. et al. Tumor cell vascular mimicry: novel targeting opportunity in melanoma. Pharm. Ther. 159, 83–92 (2016).
doi: 10.1016/j.pharmthera.2016.01.006
Besch, R., Berking, C., Kammerbauer, C. & Degitz, K. Inhibition of urokinase-type plasminogen activator receptor induces apoptosis in melanoma cells by activation of p53. Cell Death Differ. 14, 818–829 (2007).
pubmed: 17110957 doi: 10.1038/sj.cdd.4402065
Li, Y. et al. Subpopulations of uPAR+ contribute to vasculogenic mimicry and metastasis in large cell lung cancer. Exp. Mol. Pathol. 98, 136–144 (2015).
pubmed: 25661888 doi: 10.1016/j.yexmp.2015.02.001
Laurenzana, A. et al. Melanoma cell therapy: endothelial progenitor cells as shuttle of the MMP12 uPAR-degrading enzyme. Oncotarget 5, 3711–3727 (2014).
pubmed: 25003596 pmcid: 4116515 doi: 10.18632/oncotarget.1987
Yang, H. et al. HOXD10 acts as a tumor-suppressive factor via inhibition of the RHOC/AKT/MAPK pathway in human cholangiocellular carcinoma. Oncol. Rep. 34, 1681–1691 (2015).
pubmed: 26260613 pmcid: 4564083 doi: 10.3892/or.2015.4194
Bhandary, Y. P. et al. Post-transcriptional regulation of urokinase-type plasminogen activator receptor expression in lipopolysaccharide-induced acute lung injury. Am. J. Respir. Crit. Care Med 179, 288–298 (2009).
pubmed: 19029002 doi: 10.1164/rccm.200712-1787OC
Bai, X. Y. et al. Kruppel-like factor 9 down-regulates matrix metalloproteinase 9 transcription and suppresses human breast cancer invasion. Cancer Lett. 412, 224–235 (2018).
pubmed: 29107105 doi: 10.1016/j.canlet.2017.10.027
Eichner, L. J. et al. miR-378(*) mediates metabolic shift in breast cancer cells via the PGC-1beta/ERRgamma transcriptional pathway. Cell Metab. 12, 352–361 (2010).
Li, H. et al. Anti-microRNA-378a enhances wound healing process by upregulating integrin beta-3 and vimentin. Mol. Ther. 22, 1839–1850 (2014).
pubmed: 24954475 pmcid: 4428398 doi: 10.1038/mt.2014.115
Carrer, M. et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc. Natl Acad. Sci. USA 109, 15330–15335 (2012).
pubmed: 22949648 doi: 10.1073/pnas.1207605109
Tranter, M. et al. Coordinated post-transcriptional regulation of Hsp70.3 gene expression by microRNA and alternative polyadenylation. J. Biol. Chem. 286, 29828–29837 (2011).
pubmed: 21757701 pmcid: 3191024 doi: 10.1074/jbc.M111.221796
Song, C. W., Qiu, W., Zhou, X. Q., Feng, X. C. & Chen, W. S. Elevated hepatic MDR3/ABCB4 is directly mediated by MiR-378a-5p in human obstructive cholestasis. Eur. Rev. Med Pharm. Sci. 23, 2539–2547 (2019).
Liu, S. et al. MiR-378a-5p regulates proliferation and migration in vascular smooth muscle cell by targeting CDK1. Front. Genet. 10, 22 (2019).
pubmed: 30838018 pmcid: 6389607 doi: 10.3389/fgene.2019.00022
Luo, L. et al. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J. Cell Sci. 125, 3124–3132 (2012).
pubmed: 22454525 doi: 10.1242/jcs.096412
Feng, M. et al. Myc/miR-378/TOB2/cyclin D1 functional module regulates oncogenic transformation. Oncogene 30, 2242–2251 (2011).
pubmed: 21242960 doi: 10.1038/onc.2010.602
D’Aguanno, S. et al. Semaphorin 5A drives melanoma progression: role of Bcl-2, miR-204 and c-Myb. J. Exp. Clin. Cancer Res. 37, 278 (2018). 278-018-0933-x.
pubmed: 30454024 pmcid: 6245779 doi: 10.1186/s13046-018-0933-x
Sticht, C., De La Torre, C., Parveen, A. & Gretz, N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE 13, e0206239 (2018).
pubmed: 30335862 pmcid: 6193719 doi: 10.1371/journal.pone.0206239
Verschraegen, C. F., Mendoza, J. T., Kozielski, A. J. & Giovanella, B. C. Modulation of the response to chemotherapy in a human melanoma clone by the site of growth in the nude mouse. Anticancer Res. 15, 9–11 (1995).
pubmed: 7733648
Gabellini, C. et al. BH4 domain of bcl-2 protein is required for its proangiogenic function under hypoxic condition. Carcinogenesis 34, 2558–2567 (2013).
pubmed: 23836782 doi: 10.1093/carcin/bgt242
Simon, D. I. et al. Identification of a urokinase receptor-integrin interaction site. Promiscuous regulator of integrin function. J. Biol. Chem. 275, 10228–10234 (2000).
pubmed: 10744708 doi: 10.1074/jbc.275.14.10228

Auteurs

Maria Grazia Tupone (MG)

Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.

Simona D'Aguanno (S)

Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Marta Di Martile (M)

Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Elisabetta Valentini (E)

Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Marianna Desideri (M)

Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Daniela Trisciuoglio (D)

Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy.

Sara Donzelli (S)

Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Andrea Sacconi (A)

Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Simonetta Buglioni (S)

Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Cristiana Ercolani (C)

Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Alessio Biagioni (A)

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.

Gabriella Fibbi (G)

Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.

Luigi Fattore (L)

Department of Melanoma, Oncologic Immunotherapy and Innovative Therapies, Istituto Nazionale Tumori IRCCS, "Fondazione G. Pascale", Naples, Italy.

Rita Mancini (R)

Department of Molecular and Clinical Medicine, Risk Management Q&A, Sant'Andrea Hospital, "Sapienza" University, Rome, Italy.

Gennaro Ciliberto (G)

Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Giovanni Blandino (G)

Oncogenomics and Epigenetics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.

Donatella Del Bufalo (D)

Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy. donatella.delbufalo@ifo.gov.it.

Classifications MeSH