Whole-cell imaging of plasma membrane receptors by 3D lattice light-sheet dSTORM.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
14 02 2020
Historique:
received: 28 07 2019
accepted: 30 01 2020
entrez: 16 2 2020
pubmed: 16 2 2020
medline: 2 6 2020
Statut: epublish

Résumé

The molecular organization of receptors in the plasma membrane of cells is paramount for their functionality. We combined lattice light-sheet (LLS) microscopy with three-dimensional (3D) single-molecule localization microscopy (dSTORM) and single-particle tracking to quantify the expression and distribution, and mobility of CD56 receptors on whole fixed and living cells, finding that CD56 accumulated at cell-cell interfaces. For comparison, we investigated two other receptors, CD2 and CD45, which showed different expression levels and distributions in the plasma membrane. Overall, 3D-LLS-dSTORM enabled imaging and single-particle tracking of plasma membrane receptors with single-molecule sensitivity unperturbed by surface effects. Our results demonstrate that receptor distribution and mobility are largely unaffected by contact to the coverslip but the measured localization densities are in general lower at the basal plasma membrane due to partial limited accessibility for antibodies.

Identifiants

pubmed: 32060305
doi: 10.1038/s41467-020-14731-0
pii: 10.1038/s41467-020-14731-0
pmc: PMC7021797
doi:

Substances chimiques

CD2 Antigens 0
CD56 Antigen 0
NCAM1 protein, human 0
Leukocyte Common Antigens EC 3.1.3.48

Types de publication

Evaluation Study Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

887

Références

Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).
doi: 10.1038/nrd2199
Sauer, M. & Heilemann, M. Single-molecule localization microscopy in eukaryotes. Chem. Rev. 117, 7478–7509 (2017).
doi: 10.1021/acs.chemrev.6b00667
Del Paggio, J. C. Immunotherapy: cancer immunotherapy and the value of cure. Nat. Rev. Clin. Oncol. 15, 268–270 (2018).
doi: 10.1038/nrclinonc.2018.27
Rossy, J., Owen, D. M., Williamson, D. J., Yang, Z. & Gaus, K. Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat. Immun. 14, 82–89 (2013).
doi: 10.1038/ni.2488
Baumgart, F. et al. Varying label density allows artifact-free analysis of membrane-protein nanoclusters. Nat. Methods 13, 661–664 (2016).
doi: 10.1038/nmeth.3897
Hu, Y. S., Cang, H. & Lillemeier, B. F. Superresolution imaging reveals nanometer- and micrometer-scale spatial distributions of T-cell receptors in lymph nodes. Proc. Natl Acad. Sci. USA 113, 7201–7206 (2016).
doi: 10.1073/pnas.1512331113
Ponjavic, A. et al. Single-molecule light-sheet imaging of suspended T cells. Biophys. J. 114, 2200–2211 (2018).
doi: 10.1016/j.bpj.2018.02.044
Gustavsson, A.-K., Petrov, P. N., Lee, M. Y., Shechtman, Y. & Moerner, W. E. 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat. Commun. 9, 123 (2018).
doi: 10.1038/s41467-017-02563-4
Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).
doi: 10.1126/science.1257998
Legant, W. R. et al. High-density three-dimensional localization microscopy across large volumes. Nat. Methods 13, 359–365 (2016).
doi: 10.1038/nmeth.3797
Liu, Z. et al. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3, e04236 (2014).
Lu, C.-H. et al. Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging. Commun. Biol. 2, 177 (2019).
doi: 10.1038/s42003-019-0403-9
Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).
doi: 10.1002/anie.200802376
Shroff, H. et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl Acad. Sci. USA 104, 20308–20318 (2008).
doi: 10.1073/pnas.0710517105
Shen, H. et al. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117, 7331–7376 (2017).
doi: 10.1021/acs.chemrev.6b00815
Li, Y. et al. Real-time 3D single-molecule localization using experimental point spread functions. Nat. Methods 15, 367–369 (2018).
doi: 10.1038/nmeth.4661
van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011).
doi: 10.1038/nprot.2011.336
Michie, M. S. et al. Cyanine conformational restraint in the far-red range. J. Am. Chem. Soc. 139, 12406–12409 (2017).
doi: 10.1021/jacs.7b07272
Tsunoyama, T. A. et al. Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nat. Chem. Biol. 14, 497–506 (2018).
doi: 10.1038/s41589-018-0032-5
Van Acker, H. H., Capsomidis, A., Smits, E. L. & Van Tendeloo, V. F. CD56 in the immune system: more than a marker for cytotoxicity? Front. Immunol. 8, 892 (2017).
doi: 10.3389/fimmu.2017.00892
Ziegler, S. et al. CD56 is a pathogen recognition receptor on human natural killer cells. Sci. Rep. 7, 6138 (2017).
doi: 10.1038/s41598-017-06238-4
Murray, A. J., Lewis, S. J., Barclay, A. N. & Brady, R. L. One sequence, two folds: a metastable structure of CD2. Proc. Natl Acad. Sci. USA 91, 7337–7341 (1995).
doi: 10.1073/pnas.92.16.7337
Zamoyska, R. et al. Why is there so much CD45 on T cells? Immunity 27, 421–423 (2007).
doi: 10.1016/j.immuni.2007.08.009
Manzo, C. & Garcia-Parajo, M. F. Reports on progress in physics. Phys. Soc. (Gt. Br.) 78, 124601 (2015).
Wieser, S. & Schütz, G. J. Tracking single molecules in the live cell plasma membrane—do’s and don’t’s. Methods 46, 131–140 (2008).
doi: 10.1016/j.ymeth.2008.06.010
Michalet, X. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 041914 (2010).
doi: 10.1103/PhysRevE.82.041914
Hetrick, B., Hans, M. S., Helgeson, L. A. & Nolen, B. J. Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change. Chem. Biol. 20, 701–712 (2013).
doi: 10.1016/j.chembiol.2013.03.019
Firat-Karalar, E. N. & Welch, M. D. New mechanisms and functions of actin nucleation. Curr. Opin. Cell Biol. 23, 4–13 (2011).
doi: 10.1016/j.ceb.2010.10.007
Reits, E. A. J. & Neefies, J. J. From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3, E145–E147 (2001).
doi: 10.1038/35078615
Kulahin, N. et al. Direct demonstration of NCAMcis-dimerization and inhibitory effect of palmitoylation using the BRET2technique. FEBS Lett. 585, 58–64 (2011).
doi: 10.1016/j.febslet.2010.11.043
Soroka, V. et al. Structure and interactions of NCAM Ig1-2-3 suggest a novel zipper mechanism for homophilic adhesion. Structure 11, 1291–1301 (2003).
doi: 10.1016/j.str.2003.09.006
Bon, P. et al. Self-interference 3D super-resolution microscopy for deep tissue investigations. Nat. Methods 15, 449–454 (2018).
doi: 10.1038/s41592-018-0005-3
Mlodzianoski, M. J. et al. Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections. Nat. Methods 15, 583–586 (2018).
doi: 10.1038/s41592-018-0053-8
Ovesný, M., Křížek, P., Borkovec, J., Svindrych, Z. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics (Oxf., Engl.) 30, 2389–2390 (2014).
doi: 10.1093/bioinformatics/btu202
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
doi: 10.1038/nmeth.2019
Allan, D., Caswell, T., Keim, N. & van der Wel, C. Trackpy: Trackpy V0.3.2 (Zenodo, 2016).
Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).
doi: 10.1006/jcis.1996.0217

Auteurs

Felix Wäldchen (F)

Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.

Jan Schlegel (J)

Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.

Ralph Götz (R)

Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.

Michael Luciano (M)

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.

Martin Schnermann (M)

Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.

Sören Doose (S)

Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.

Markus Sauer (M)

Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany. m.sauer@uni-wuerzburg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH