Alteration in the potential of sediment phosphorus release along series of rubber dams in a typical urban landscape river.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
17 02 2020
Historique:
received: 01 11 2019
accepted: 29 01 2020
entrez: 19 2 2020
pubmed: 19 2 2020
medline: 19 2 2020
Statut: epublish

Résumé

Rubber dams are widely used for landscaping in urban rivers and they retain large amounts of sediments. The sediments are rich in phosphorus (P) which can cause river eutrophication. Little is known about P release in rubber dams. We investigated the potential of sediment P release by isotherm experiment in an urban river with 30 rubber dams of northern China. We found that the potential of sediment P release (percentage saturation of zero equilibrium P concentration, EPC

Identifiants

pubmed: 32066760
doi: 10.1038/s41598-020-59493-3
pii: 10.1038/s41598-020-59493-3
pmc: PMC7026097
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2714

Références

McDowell, R. W., Larned, S. T. & Houlbrooke, D. J. Nitrogen and phosphorus in New Zealand streams and rivers: control and impact of eutrophication and the influence of land management. N. Zeal J. Mar. Fresh 43, 985–995 (2009).
doi: 10.1080/00288330909510055
Hilton, J., O’Hare, M., Bowes, M. J. & Jones, J. I. How green is my river? A new paradigm of eutrophication in rivers. Sci. Total. Env. 365, 66–83, https://doi.org/10.1016/j.scitotenv.2006.02.055 (2006).
doi: 10.1016/j.scitotenv.2006.02.055
Cunha-Santino, M. B., Fushita, Â. T. & Bianchini, I. A modeling approach for a cascade of reservoirs in the Juquia-Guacu River (Atlantic Forest, Brazil). Ecol. Model. 356, 48–58, https://doi.org/10.1016/j.ecolmodel.2017.04.008 (2017).
doi: 10.1016/j.ecolmodel.2017.04.008
Ran, X. B. et al. Phosphorus speciation, transformation and retention in the Three Gorges Reservoir, China. Mar. Freshw. Res. 67, 173–186, https://doi.org/10.1071/MF14344 (2016).
doi: 10.1071/MF14344
Maavara, T. et al. Global phosphorus retention by river damming. P Natl Acad. Sci. USA 112, 15603–15608, https://doi.org/10.1073/pnas.1511797112 (2015).
doi: 10.1073/pnas.1511797112
Némery, J. et al. Carbon, nitrogen, phosphorus, and sediment sources and retention in a small eutrophic tropical reservoir. Aquat. Sci. 78, 171–189, https://doi.org/10.1007/s00027-015-0416-5 (2016).
doi: 10.1007/s00027-015-0416-5
Jeong, K. S., Kim, D. K. & Joo, G. J. Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Res. 41, 1269–1279, https://doi.org/10.1016/j.watres.2006.11.054 (2007).
doi: 10.1016/j.watres.2006.11.054 pubmed: 17303210
Thompson, P. A., Waite, A. M. & McMahon, K. Dynamics of a cyanobacterial bloom in a hypereutrophic, stratified weir pool. Mar. Freshw. Res. 54, 27–37, https://doi.org/10.1071/MF02060 (2003).
doi: 10.1071/MF02060
Kim, L. H., Choi, E., Gil, K. I. & Stenstrom, M. K. Phosphorus release rates from sediments and pollutant characteristics in Han River, Seoul, Korea. Sci. Total. Env. 321, 115–125, https://doi.org/10.1016/j.scitotenv.2003.08.018 (2004).
doi: 10.1016/j.scitotenv.2003.08.018
Vo, N. X. Q., Doan, T. V. & Kang, H. Impoundments increase potential for phosphorus retention and remobilization in an urban stream. Environ. Eng. Res. 19, 175–184 (2014).
doi: 10.4491/eer.2014.19.2.175
Zhang, Z. B., Tan, X. B., Wei, L. L., Yu, S. M. & Wu, D. J. Comparison between the lower Nansi Lake and its inflow rivers in sedimentary phosphorus fractions and phosphorus adsorption characteristics. Env. Earth Sci. 66, 1569–1576, https://doi.org/10.1007/s12665-011-1400-6 (2012).
doi: 10.1007/s12665-011-1400-6
Zhang, Z. J. et al. Properties of phosphorus retention in sediments under different hydrological regimes: A laboratory-scale simulation study. J. Hydrol. 404, 109–116, https://doi.org/10.1016/j.jhydrol.2010.06.018 (2011).
doi: 10.1016/j.jhydrol.2010.06.018
Gainswin, B. E., House, W. A., Leadbeater, B. S. C., Armitage, P. D. & Patten, J. The effects of sediment size fraction and associated algal biofilms on the kinetics of phosphorus release. Sci. Total. Env. 360, 142–157, https://doi.org/10.1016/j.scitotenv.2005.08.034 (2006).
doi: 10.1016/j.scitotenv.2005.08.034
Small, G. E. et al. Phosphorus retention in a lowland Neotropical stream following an eight-year enrichment experiment. Freshw. Sci. 35, 1–11, https://doi.org/10.1086/684491 (2016).
doi: 10.1086/684491
Solim, S. U. & Wanganeo, A. Factors influencing release of phosphorus from sediments in a high productive polymictic lake system. Water Sci. Technol. 60, 1013–1023, https://doi.org/10.2166/wst.2009.445 (2009).
doi: 10.2166/wst.2009.445 pubmed: 19700840
Liang, Z., Liu, Z. M., Zhen, S. M. & He, R. Phosphorus speciation and effects of environmental factors on release of phosphorus from sediments obtained from Taihu Lake, Tien Lake, and East Lake. Toxicol. Env. Chem. 97, 335–348, https://doi.org/10.1080/02772248.2015.1050186 (2015).
doi: 10.1080/02772248.2015.1050186
He, J. et al. Analysis of factors controlling sediment phosphorus flux potential of wetlands in Hulun Buir grassland by principal component and path analysis method. Environ Monit Assess 189, Artn 61710.1007/S10661-017-6312-9 (2017).
Emelko, M. B. et al. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Glob. Change Biol. 22, 1168–1184, https://doi.org/10.1111/gcb.13073 (2016).
doi: 10.1111/gcb.13073
Palmer-Felgate, E. J., Jarvie, H. P., Withers, P. J. A., Mortimer, R. J. G. & Krom, M. D. Stream-bed phosphorus in paired catchments with different agricultural land use intensity. Agr. Ecosyst. Env. 134, 53–66, https://doi.org/10.1016/j.agee.2009.05.014 (2009).
doi: 10.1016/j.agee.2009.05.014
Pardo, P., López-Sánchez, J. F. & Rauret, G. Relationships between phosphorus fractionation and major components in sediments using the SMT harmonised extraction procedure. Anal. Bioanal. Chem. 376, 248–254, https://doi.org/10.1007/s00216-003-1897-y (2003).
doi: 10.1007/s00216-003-1897-y pubmed: 12692704
Huang, L., Fang, H., He, G. & Chen, M. Phosphorus adsorption on natural sediments with different pH incorporating surface morphology characterization. Env. Sci. Pollut. R. 23, 18883–18891 (2016).
doi: 10.1007/s11356-016-7093-3
Zhang, W. Q. et al. Characteristics, distribution and ecological risk assessment of phosphorus in surface sediments from different ecosystems in Eastern China: A P-31-nuclear magnetic resonance study. Ecol. Eng. 75, 264–271, https://doi.org/10.1016/j.ecoleng.2014.11.055 (2015).
doi: 10.1016/j.ecoleng.2014.11.055
Rothe, M. et al. Sedimentary sulphur:iron ratio indicates vivianite occurrence: A study from two contrasting freshwater systems. Plos One 10, e0143737, doi:ARTN e014373710.1371/journal.pone.0143737 (2015).
Jalali, M. & Peikam, E. N. Phosphorus sorption-desorption behaviour of river bed sediments in the Abshineh river, Hamedan, Iran, related to their composition. Env. Monit. Assess. 185, 537–552, https://doi.org/10.1007/s10661-012-2573-5 (2013).
doi: 10.1007/s10661-012-2573-5
Teodoru, C. & Wehrli, B. Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River. Biogeochemistry 76, 539–565, https://doi.org/10.1007/s10533-005-0230-6 (2005).
doi: 10.1007/s10533-005-0230-6
Matisoff, G., Watson, S. B., Guo, J., Duewiger, A. & Steely, R. Sediment and nutrient distribution and resuspension in Lake Winnipeg. Sci. Total. Env. 575, 173–186 (2016).
doi: 10.1016/j.scitotenv.2016.09.227
Zhang, W. Q. et al. Evidence for organic phosphorus activation and transformation at the sediment-water interface during plant debris decomposition. Sci. Total. Env. 583, 458–465, https://doi.org/10.1016/j.scitotenv.2017.01.103 (2017).
doi: 10.1016/j.scitotenv.2017.01.103
Wang, J. Y. & Pant, H. K. Enzymatic hydrolysis of organic phosphorus in river bed sediments. Ecol. Eng. 36, 963–968, https://doi.org/10.1016/j.ecoleng.2010.03.006 (2010).
doi: 10.1016/j.ecoleng.2010.03.006
Pan, M., Zhu, L., Qin, W. H., Guo, Z. Y. & Xia, X. Effects of aeration modes on transformation of phosphorus in surface sediment downstream of a municipal sewage treatment plant. Desalin Water Treat. 57, 10850–10858, https://doi.org/10.1080/19443994.2015.1038591 (2016).
doi: 10.1080/19443994.2015.1038591
Zhang, W. Q. et al. Do NH3 and chemical oxygen demand induce continuous release of phosphorus from sediment in heavily polluted rivers? Ecol. Eng. 102, 24–30, https://doi.org/10.1016/j.ecoleng.2017.02.003 (2017).
doi: 10.1016/j.ecoleng.2017.02.003
Zhang, Y. et al. Release characteristics of sediment phosphorus in all fractions of West Lake, Hang Zhou, China. Ecol. Eng. 95, 645–651, https://doi.org/10.1016/j.ecoleng.2016.06.014 (2016).
doi: 10.1016/j.ecoleng.2016.06.014
Vilmin, L. et al. Impact of hydro-sedimentary processes on the dynamics of soluble reactive phosphorus in the Seine River. Biogeochemistry 122, 229–251, https://doi.org/10.1007/s10533-014-0038-3 (2015).
doi: 10.1007/s10533-014-0038-3
Pulley, S., Foster, I. & Antunes, P. The dynamics of sediment-associated contaminants over a transition from drought to multiple flood events in a lowland UK catchment. Hydrol. Process. 30, 704–719, https://doi.org/10.1002/hyp.10616 (2016).
doi: 10.1002/hyp.10616
Wang, T. X. et al. Spatial distribution, adsorption/release characteristics, and environment influence of phosphorus on sediment in reservoir. Water-Sui 9, https://doi.org/10.3390/W9090724 (2017).
doi: 10.3390/w9090724
Lopez, P., Marće, R., Ordoñez, J., Urrutia, I. & Armengol, J. Sedimentary phosphorus in a cascade of five reservoirs (Lozoya River, Central Spain). Lake Reserv. Manage 25, 39–48, https://doi.org/10.1080/07438140802714353 (2009).
doi: 10.1080/07438140802714353
Liu, Q. et al. Longitudinal variability of phosphorus fractions in sediments of a canyon reservoir due to cascade dam construction: A case study in Lancang River, China. PLoS One 8, e83329, https://doi.org/10.1371/journal.pone.0083329 (2013).
doi: 10.1371/journal.pone.0083329 pubmed: 24386180 pmcid: 3873304
Klaver, G., van Os, B., Negrel, P. & Petelet-Giraud, E. Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube. Env. Pollut. 148, 718–728, https://doi.org/10.1016/j.envpol.2007.01.037 (2007).
doi: 10.1016/j.envpol.2007.01.037
von Schiller, D. et al. Regulation causes nitrogen cycling discontinuities in Mediterranean rivers. Sci. Total. Env. 540, 168–177, https://doi.org/10.1016/j.scitotenv.2015.07.017 (2016).
doi: 10.1016/j.scitotenv.2015.07.017
Gao, L. et al. Aquatic environmental changes and anthropogenic activities reflected by the sedimentary records of the Shima River, Southern China. Env. Pollut. 224, 70–81, https://doi.org/10.1016/j.envpol.2016.12.056 (2017).
doi: 10.1016/j.envpol.2016.12.056
Lou, B. F. & Yin, S. Y. Spatial and seasonal distribution of phosphorus in the mainstem within the Three Gorges Reservoir before and after impoundment. Water Sci. Technol. 73, 636–642, https://doi.org/10.2166/wst.2015.516 (2016).
doi: 10.2166/wst.2015.516 pubmed: 26877047
Bayram, A., Önsoy, H., Kӧmürcü, M. İ. & Tüfekçi, M. Reciprocal influence of Kurtun Dam and wastewaters from the settlements on water quality in the stream HarAYit, NE Turkey. Env. Earth Sci. 72, 2849–2860, https://doi.org/10.1007/s12665-014-3190-0 (2014).
doi: 10.1007/s12665-014-3190-0
Liu, Q. et al. The phosphorus speciations in the sediments up- and down-stream of cascade dams along the middle Lancang River. Chemosphere 120, 653–659, https://doi.org/10.1016/j.chemosphere.2014.10.012 (2015).
doi: 10.1016/j.chemosphere.2014.10.012 pubmed: 25462310
Bao, L., Li, X. & Cheng, P. Phosphorus retention along a typical urban landscape river with a series of rubber dams. J. Env. Manage 228, 55–64 (2018).
doi: 10.1016/j.jenvman.2018.09.019
Zhou, A. M., Tang, H. X. & Wang, D. S. Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition. Water Res. 39, 1245–1254, https://doi.org/10.1016/j.watres.2005.01.026 (2005).
doi: 10.1016/j.watres.2005.01.026 pubmed: 15862324
Jarvie, H. P. et al. Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: the Hampshire Avon and Herefordshire Wye. J. Hydrol. 304, 51–74, https://doi.org/10.1016/j.jhydrol.2004.10.002 (2005).
doi: 10.1016/j.jhydrol.2004.10.002
Ruban, V. et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments - A synthesis of recent works. Fresen J. Anal. Chem. 370, 224–228, https://doi.org/10.1007/s002160100753 (2001).
doi: 10.1007/s002160100753
Udden, J. A. Mechanical composition of clastic sediments. Bull. Geol. Soc. Am. 25, 655–744 (1914).
doi: 10.1130/GSAB-25-655
He, H. J. et al. Behavior of different phosphorus species in suspended particulate matter in the Changjiang estuary. Chin. J. Oceanol. Limn. 27, 859–868, https://doi.org/10.1007/s00343-009-9021-6 (2009).
doi: 10.1007/s00343-009-9021-6
Bi, J. A Review Of Statistical Methods for Determination Of Relative Importance Of Correlated Predictors And Identification Of Drivers Of Consumer Liking. J. Sens. Stud. 27, 87–101, https://doi.org/10.1111/j.1745-459X.2012.00370.x (2012).
doi: 10.1111/j.1745-459X.2012.00370.x
Pyrce, R. S. & Ashmore, P. E. The relation between particle path length distributions and channel morphology in gravel-bed streams: a synthesis. Geomorphology 56, 167–187, https://doi.org/10.1016/S0169-555x(02)00077-1 (2003).
doi: 10.1016/S0169-555x(02)00077-1
Zhu, H. W., Wang, D. Z., Cheng, P. D., Fan, J. Y. & Zhong, B. C. Effects of sediment physical properties on the phosphorus release in aquatic environment. Sci. China Phys. Mech. 58, 024702, https://doi.org/10.1007/S11433-014-5582-2 (2015).
doi: 10.1007/S11433-014-5582-2
Doyle, M. W., Stanley, E. H. & Harbor, J. M. Hydrogeomorphic controls on phosphorus retention in streams. Water Resour Res 39, https://doi.org/10.1029/2003wr002038 (2003).
Gao, Y., Cornwell, J. C., Stoecker, D. K. & Owens, M. S. Influence of cyanobacteria blooms on sediment biogeochemistry and nutrient fluxes. Limnol. Oceanogr. 59, 959–971, https://doi.org/10.4319/lo.2014.59.3.0959 (2014).
doi: 10.4319/lo.2014.59.3.0959
Yu, J. H. et al. Evaluation of simulated dredging to control internal phosphorus release from sediments: Focused on phosphorus transfer and resupply across the sediment-water interface. Sci. Total. Env. 592, 662–673, https://doi.org/10.1016/j.scitotenv.2017.02.219 (2017).
doi: 10.1016/j.scitotenv.2017.02.219
Kralchevska, R. P. et al. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles. Water Res. 103, 83–91, https://doi.org/10.1016/j.watres.2016.07.021 (2016).
doi: 10.1016/j.watres.2016.07.021 pubmed: 27438903
Baasch, A. & Goetz, D. Release of substances from secondary materials in field conditions. Env. Eng. Sci. 23, 118–124 (2006).
doi: 10.1089/ees.2006.23.118
Al-Enezi, E., Bockelmann-Evans, B. & Falconer, R. Phosphorus adsorption/desorption processes of estuarine sediment: a case study-Loughor Estuary, UK. Arab J Geosci 9, 200, https://doi.org/10.1007/S12517-015-2014-1 (2016).

Auteurs

Linlin Bao (L)

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.

Xuyong Li (X)

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. xyli@rcees.ac.cn.
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China. xyli@rcees.ac.cn.

Jingjun Su (J)

State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.

Classifications MeSH