STING Pathway Expression Identifies NSCLC With an Immune-Responsive Phenotype.
Immune checkpoints
Immunotherapy
Innate immunity
Lung cancer
STING
Journal
Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer
ISSN: 1556-1380
Titre abrégé: J Thorac Oncol
Pays: United States
ID NLM: 101274235
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
31
05
2019
revised:
17
12
2019
accepted:
15
01
2020
pubmed:
19
2
2020
medline:
7
1
2021
entrez:
19
2
2020
Statut:
ppublish
Résumé
Although the combination of anti-programmed cell death-1 or anti-programmed cell death ligand-1 (PD-L1) with platinum chemotherapy is a standard of care for NSCLC, clinical responses vary. Even though predictive biomarkers (which include PD-L1 expression, tumor mutational burden, and inflamed immune microenvironment) are validated for immunotherapy, their relevance to chemoimmunotherapy combinations is less clear. We have recently reported that activation of the stimulator of interferon genes (STING) innate immune pathway enhances immunotherapy response in SCLC. Here, we hypothesize that STING pathway activation may predict and underlie predictive correlates of antitumor immunity in NSCLC. We analyzed transcriptomic and proteomic profiles in two NSCLC cohorts from our institution (treatment-naive patients in the Profiling of Resistance Patterns and Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax study and relapsed patients in the Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination study) and The Cancer Genome Atlas (N = 1320). Tumors were stratified by STING activation on the basis of protein or mRNA expression of cyclic GMP-AMP synthase, phospho-STING, and STING-mediated chemokines (chemokine ligand 5 [CCL5] and C-X-C motif chemokine 10 [CXCL10]). STING activation in patient tumors and in platinum-treated preclinical NSCLC models was correlated with biomarkers of immunotherapy response. STING activation is associated with higher levels of intrinsic DNA damage, targetable immune checkpoints, and chemokines in treatment-naive and relapsed lung adenocarcinoma. We observed that tumors with lower STING and immune gene expression show higher frequency of serine-threonine kinase 11 (STK11) mutations; however, we identified a subset of these tumors that are TP53 comutated and display high immune- and STING-related gene expression. Treatment with cisplatin increases STING pathway activation and PD-L1 expression in multiple NSCLC preclinical models, including adeno- and squamous cell carcinoma. STING pathway activation in NSCLC predicts features of immunotherapy response and is enhanced by cisplatin treatment. This suggests a possible predictive biomarker and mechanism for improved response to chemoimmunotherapy combinations.
Identifiants
pubmed: 32068166
pii: S1556-0864(20)30030-7
doi: 10.1016/j.jtho.2020.01.009
pmc: PMC7202130
mid: NIHMS1573956
pii:
doi:
Substances chimiques
B7-H1 Antigen
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
777-791Subventions
Organisme : NCI NIH HHS
ID : U01 CA213273
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016672
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA207295
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA070907
Pays : United States
Organisme : NCI NIH HHS
ID : R37 CA214609
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA009666
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA205150
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
Copyright © 2020 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Références
Oncotarget. 2017 Sep 1;8(43):73419-73432
pubmed: 29088717
Clin Cancer Res. 2016 Feb 1;22(3):609-20
pubmed: 26420858
Cancer Discov. 2019 Jan;9(1):16-18
pubmed: 30626603
J Natl Cancer Inst. 2016 Oct 5;109(1):
pubmed: 27707838
N Engl J Med. 2016 Nov 10;375(19):1823-1833
pubmed: 27718847
J Thorac Oncol. 2019 Dec;14(12):2152-2163
pubmed: 31470128
N Engl J Med. 2018 May 31;378(22):2093-2104
pubmed: 29658845
Transl Lung Cancer Res. 2018 Feb;7(1):50-68
pubmed: 29535912
Cancer Discov. 2019 Jan;9(1):34-45
pubmed: 30297358
Mol Ther Nucleic Acids. 2019 Mar 1;14:80-89
pubmed: 30583098
Cell Rep. 2018 Dec 11;25(11):2972-2980.e5
pubmed: 30540933
Clin Cancer Res. 2016 Jul 15;22(14):3630-42
pubmed: 26851185
Cancer Discov. 2012 Sep;2(9):798-811
pubmed: 22961666
Future Med Chem. 2018 Dec;10(24):2767-2769
pubmed: 30526033
J Clin Invest. 2017 Aug 1;127(8):2930-2940
pubmed: 28650338
Cancer Discov. 2018 Jul;8(7):822-835
pubmed: 29773717
Clin Cancer Res. 2016 Sep 15;22(18):4585-93
pubmed: 27225694
J Clin Oncol. 2019 Feb 1;37(4):318-327
pubmed: 30557521
Nat Commun. 2014 Oct 28;5:5241
pubmed: 25348003
N Engl J Med. 2018 Nov 22;379(21):2040-2051
pubmed: 30280635
J Natl Compr Canc Netw. 2018 Jul;16(7):807-821
pubmed: 30006423
Genes Dev. 2009 Sep 15;23(18):2140-51
pubmed: 19759262
Nature. 2014 Jul 31;511(7511):543-50
pubmed: 25079552
Clin Cancer Res. 2016 Apr 15;22(8):1845-55
pubmed: 27084738
Nature. 2018 Dec;564(7736):439-443
pubmed: 30405246
Clin Cancer Res. 2015 Aug 1;21(15):3480-91
pubmed: 25878335
Nat Rev Immunol. 2015 Dec;15(12):760-70
pubmed: 26603901
Cancer Immunol Res. 2018 Sep;6(9):990-1000
pubmed: 30181337
Clin Cancer Res. 2017 Jul 15;23(14):3610-3618
pubmed: 28137924
Cancer Discov. 2019 May;9(5):646-661
pubmed: 30777870
Cancer Discov. 2011 Jun;1(1):44-53
pubmed: 22586319
JCI Insight. 2018 Nov 15;3(22):
pubmed: 30429378
N Engl J Med. 2018 May 31;378(22):2078-2092
pubmed: 29658856
Cancer Discov. 2015 Aug;5(8):860-77
pubmed: 26069186
Nat Commun. 2017 Nov 24;8(1):1751
pubmed: 29170499
Curr Opin Immunol. 2016 Aug;41:23-31
pubmed: 27240055
Sci Signal. 2013 Apr 02;6(269):pl1
pubmed: 23550210
Cancer Discov. 2018 Sep;8(9):1156-1175
pubmed: 30012853
J Clin Oncol. 2018 Mar 1;36(7):633-641
pubmed: 29337640
Mol Cell. 2018 Sep 6;71(5):745-760.e5
pubmed: 30193098
J Thorac Oncol. 2017 Feb;12(2):403-407
pubmed: 27765535