Genome-Wide Analysis of Gene Expression Provides New Insights into Waterlogging Responses in Barley (
RNA-Seq
barley
differentially expressed genes
transcription factors
waterlogging stress
Journal
Plants (Basel, Switzerland)
ISSN: 2223-7747
Titre abrégé: Plants (Basel)
Pays: Switzerland
ID NLM: 101596181
Informations de publication
Date de publication:
13 Feb 2020
13 Feb 2020
Historique:
received:
24
01
2020
revised:
07
02
2020
accepted:
10
02
2020
entrez:
20
2
2020
pubmed:
20
2
2020
medline:
20
2
2020
Statut:
epublish
Résumé
Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding, the genome-wide gene expression responses in roots of waterlogged barley seedlings of Yerong and Deder2 were analyzed by RNA-Sequencing. A total of 6736, 5482, and 4538 differentially expressed genes (DEGs) were identified in waterlogged roots of Yerong at 72 h and Deder2 at 72 and 120 h, respectively, compared with the non-waterlogged control. Gene Ontology (GO) enrichment analyses showed that the most significant changes in GO terms, resulted from these DEGs observed under waterlogging stress, were related to primary and secondary metabolism, regulation, and oxygen carrier activity. In addition, more than 297 transcription factors, including members of MYB, AP2/EREBP, NAC, WRKY, bHLH, bZIP, and G2-like families, were identified as waterlogging responsive. Tentative important contributors to waterlogging tolerance in Deder2 might be the highest up-regulated DEGs: Trichome birefringence, α/β-Hydrolases, Xylanase inhibitor, MATE efflux, serine carboxypeptidase, and SAUR-like auxin-responsive protein. The study provides insights into the molecular mechanisms underlying the response to waterlogging in barley, which will be of benefit for future studies of molecular responses to waterlogging and will greatly assist barley genetic research and breeding.
Identifiants
pubmed: 32069892
pii: plants9020240
doi: 10.3390/plants9020240
pmc: PMC7076447
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Mol Gen Genet. 1986 Dec;205(3):461-8
pubmed: 2436026
Plant Mol Biol. 2011 Sep;77(1-2):129-44
pubmed: 21656040
Plant Biotechnol J. 2019 Dec;17(12):2286-2298
pubmed: 31033158
Sci Rep. 2017 Jun 15;7(1):3592
pubmed: 28620222
Genomics. 2012 Mar;99(3):160-8
pubmed: 22240004
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Front Plant Sci. 2017 Nov 16;8:1941
pubmed: 29201033
PLoS One. 2012;7(6):e39786
pubmed: 22768123
Int J Mol Sci. 2018 May 14;19(5):
pubmed: 29757964
Plant Direct. 2018 Apr 25;2(4):e00056
pubmed: 31245721
Arabidopsis Book. 2010;8:e0131
pubmed: 22303257
Plant Cell Environ. 2019 May;42(5):1458-1470
pubmed: 30556134
Nat Biotechnol. 2010 May;28(5):511-5
pubmed: 20436464
Nucleic Acids Res. 2002 Jan 1;30(1):207-10
pubmed: 11752295
Plant Physiol. 2007 May;144(1):218-31
pubmed: 17369434
Planta. 2014 Jan;239(1):47-60
pubmed: 24062085
Plant Cell Physiol. 2010 Jan;51(1):21-37
pubmed: 19923201
Plant Physiol. 1995 Jun;108(2):735-741
pubmed: 12228505
Int J Mol Sci. 2019 Feb 06;20(3):
pubmed: 30736310
Genes (Basel). 2019 Jun 21;10(6):
pubmed: 31234426
J Proteomics. 2015 Jan 30;114:161-81
pubmed: 25464361
Trends Plant Sci. 2010 Oct;15(10):573-81
pubmed: 20674465
PLoS One. 2014 Dec 12;9(12):e115128
pubmed: 25501819
Ann Bot. 2008 Oct;102(4):509-19
pubmed: 18669574
J Exp Bot. 2008;59(9):2325-35
pubmed: 18508812
Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198
pubmed: 31066453
Front Plant Sci. 2016 Jun 22;7:877
pubmed: 27446110
PLoS One. 2010 Nov 15;5(11):e13984
pubmed: 21085593
J Exp Bot. 2012 Apr;63(7):2541-56
pubmed: 22301384
J Exp Bot. 2000 Jan;51(342):89-97
pubmed: 10938799
AoB Plants. 2015 Jul 20;7:
pubmed: 26194168
Sci Rep. 2017 Sep 8;7(1):10950
pubmed: 28887464
Ann Bot. 2003 Jan;91 Spec No:119-27
pubmed: 12509333
Planta. 2013 Nov;238(5):969-82
pubmed: 23975011
PLoS One. 2013;8(1):e53388
pubmed: 23308210
Nat Protoc. 2019 Feb;14(2):482-517
pubmed: 30664679
Planta. 2017 Feb;245(2):283-295
pubmed: 27730410
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Plant Physiol. 2003 Jul;132(3):1292-302
pubmed: 12857811
Front Plant Sci. 2017 May 15;8:762
pubmed: 28555145
J Exp Bot. 2014 Sep;65(17):4795-806
pubmed: 24913626
PLoS One. 2017 Sep 27;12(9):e0185075
pubmed: 28953908
Gene. 2008 Aug 15;420(1):57-65
pubmed: 18571878
Biol Direct. 2010 Jan 07;5:1
pubmed: 20056006
Biomed Res Int. 2013;2013:963525
pubmed: 23484164
Mol Plant. 2015 Aug;8(8):1153-64
pubmed: 25983207
Plant Physiol. 2009 Jan;149(1):461-73
pubmed: 19005089
Theor Appl Genet. 2016 Jun;129(6):1167-77
pubmed: 26908252
Phytochemistry. 2003 Sep;64(1):3-19
pubmed: 12946402
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Front Plant Sci. 2017 Jul 11;8:1216
pubmed: 28744299
R Soc Open Sci. 2018 Jun 27;5(6):172253
pubmed: 30110413
J Proteomics. 2013 Nov 20;93:169-78
pubmed: 23313220
Mol Plant. 2014 Oct;7(10):1522-32
pubmed: 24851876
Front Plant Sci. 2015 Jul 22;6:550
pubmed: 26257757
Sci Rep. 2018 Jun 25;8(1):9655
pubmed: 29941955
Trends Plant Sci. 2012 Mar;17(3):129-38
pubmed: 22280796
BMC Genomics. 2008 Aug 27;9:401
pubmed: 18752688
Annu Rev Plant Biol. 2015;66:345-67
pubmed: 25580837
Ann Bot. 2003 Jan;91 Spec No:179-94
pubmed: 12509339
Plant Cell Rep. 2014 Feb;33(2):289-99
pubmed: 24384821
BMC Genomics. 2015 Jun 05;16:432
pubmed: 26044796
Nature. 2006 Aug 10;442(7103):705-8
pubmed: 16900200
BMC Plant Biol. 2017 Jul 26;17(1):129
pubmed: 28747176