Some Gammaproteobacteria are enriched within CD14
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 02 2020
19 02 2020
Historique:
received:
03
12
2019
accepted:
04
02
2020
entrez:
21
2
2020
pubmed:
23
2
2020
medline:
21
11
2020
Statut:
epublish
Résumé
Crohn's disease causes chronic inflammation in the gastrointestinal tract and its pathogenesis remains unclear. In the intestine of Crohn's disease patients, CD14
Identifiants
pubmed: 32076066
doi: 10.1038/s41598-020-59937-w
pii: 10.1038/s41598-020-59937-w
pmc: PMC7031516
doi:
Substances chimiques
CD14 protein, human
0
DNA, Bacterial
0
Lipopolysaccharide Receptors
0
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2988Références
Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).
doi: 10.1038/nri3661
de Souza, H. S. & Fiocchi, C. Nat. Rev. Gastroenterol. Hepatol. 13, 13–27 (2016).
doi: 10.1038/nrgastro.2015.186
Kamada, N. et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J. Clin. Invest. 118, 2269–2280 (2008).
pubmed: 18497880
pmcid: 2391067
Kamada, N. et al. Human CD14
doi: 10.4049/jimmunol.0804369
Ogino, T. et al. Increased Th17-inducing activity of CD14
doi: 10.1053/j.gastro.2013.08.049
Barman, S. et al. Identification of a human intestinal myeloid cell subset that regulates gut homeostasis. Int. Immunol. 28, 533–545 (2016).
doi: 10.1093/intimm/dxw034
Glasser, A. L. et al. Glasser AL1, Boudeau J, Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect. Immun. 69, 5529–5537 (2001).
doi: 10.1128/IAI.69.9.5529-5537.2001
Vazeille, E. et al. Monocyte-derived macrophages from Crohn’s disease patients are impaired in the ability to control intracellular adherent-invasive Escherichia coli and exhibit disordered cytokine secretion profile. J. Crohns Colitis. 9, 410–420 (2015).
doi: 10.1093/ecco-jcc/jjv053
Rahman, K. et al. Crohn’s disease-associated Escherichia coli survive in macrophages by suppressing NFκB signaling. Inflamm. Bowel Dis. 20, 1419–1425 (2014).
doi: 10.1097/MIB.0000000000000096
Chiodini, R. J. et al. Microbial Population Differentials between Mucosal and Submucosal Intestinal Tissues in Advanced Crohn’s Disease of the Ileum. PLoS One. 10, e0134382 (2015).
doi: 10.1371/journal.pone.0134382
Takahashi, K., Nishida, A. & Fujimoto, T. Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn’s Disease. Digestion. 93, 59–65 (2016).
doi: 10.1159/000441768
Pascal, V. et al. A microbial signature for Crohn’s disease. Gut. 66, 813–822 (2017).
doi: 10.1136/gutjnl-2016-313235
Imhann, F. et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 67, 108–119 (2018).
doi: 10.1136/gutjnl-2016-312135
Nishino, K. et al. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J. Gastroenterol. 53, 95–106 (2018).
doi: 10.1007/s00535-017-1384-4
Sekido, Y. et al. Innate Myeloid Cell Subset-Specific Gene Expression Patterns in the Human Colon are Altered in Crohn’s Disease Patients. Digestion. 99, 194–204 (2019).
doi: 10.1159/000490890
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108(Suppl 1), 4516–4522 (2011).
doi: 10.1073/pnas.1000080107
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 10, 996–998 (2013).
doi: 10.1038/nmeth.2604
McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).
doi: 10.1038/ismej.2011.139
Andersen, M. J. A new method for non‐parametric multivariate analysis of variance. Austral Ecology. 26, 32–46 (2001).
doi: 10.1046/j.1442-9993.2001.01106.x
Ni, J., Wu, G. D., Albenberg, L. & Tomov, V. T. Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017).
doi: 10.1038/nrgastro.2017.88
Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 159, 514–529 (2014).
doi: 10.1016/j.cell.2014.09.048
Liang, X. et al. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc. Natl Acad. Sci. USA 112, 10479–10484 (2015).
doi: 10.1073/pnas.1501305112
Claesson, M. J. et al. A clinician’s guide to microbiome analysis. Nat. Rev. Gastroenterol. Hepatol. 14, 585–595 (2017).
doi: 10.1038/nrgastro.2017.97
Lees, C. W., Barrett, J. C., Parkes, M. & Satsangi, J. New IBD genetics: common pathways with other diseases. Gut. 60, 1739–1753 (2011).
doi: 10.1136/gut.2009.199679
El Mouzan, M. I. et al. Microbiota profile in new-onset pediatric Crohn’s disease: data from a non-Western population. Gut Pathog. 10, 49 (2018).
doi: 10.1186/s13099-018-0276-3
Tayabali, A. F. et al. Comparison of the virulence potential of Acinetobacter strains from clinical and environmental sources. PLoS One. 7, e37024 (2012).
doi: 10.1371/journal.pone.0037024
Amcoff, K. et al. Concordance in Anti-OmpC and Anti-I2 Indicate the Influence of Genetic Predisposition: Results of a European Study of Twins with Crohn’s Disease. J. Crohns Colitis. 10, 695–702 (2016).
doi: 10.1093/ecco-jcc/jjw021
Ridaura, V. K. et al. Contextual control of skin immunity and inflammation by Corynebacterium. J. Exp. Med. 215, 785–799 (2018).
doi: 10.1084/jem.20171079
Hacker, E. et al. The killing of macrophages by Corynebacterium ulcerans. Virulence. 7, 45–55 (2016).
doi: 10.1080/21505594.2015.1125068
Kagan, J. C. et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9, 361–368 (2008).
doi: 10.1038/ni1569
Zanoni, I. et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell. 147, 868–880 (2011).
doi: 10.1016/j.cell.2011.09.051
Boye, L. et al. Plasma membrane Toll-like receptor activation increases bacterial uptake but abrogates endosomal Lactobacillus acidophilus induction of interferon-β. Immunology. 149, 329–342 (2016).
doi: 10.1111/imm.12650
Tan, Y. et al. Mechanisms of Toll-like Receptor 4 Endocytosis Reveal a Common Immune-Evasion Strategy Used by Pathogenic and Commensal Bacteria. Immunity. 43, 909–922 (2015).
doi: 10.1016/j.immuni.2015.10.008
Perkins, D. J. et al. Autocrine-paracrine prostaglandin E2 signaling restricts TLR4 internalization and TRIF signaling. Nat. Immunol. 19, 1309–1318 (2018).
doi: 10.1038/s41590-018-0243-7