Drivers of global Scolytinae invasion patterns.

Scolytinae ambrosia beetles bark beetles biological invasions forest insects imports pathways

Journal

Ecological applications : a publication of the Ecological Society of America
ISSN: 1051-0761
Titre abrégé: Ecol Appl
Pays: United States
ID NLM: 9889808

Informations de publication

Date de publication:
07 2020
Historique:
received: 18 09 2019
revised: 08 01 2020
accepted: 29 01 2020
pubmed: 23 2 2020
medline: 7 1 2021
entrez: 23 2 2020
Statut: ppublish

Résumé

Biological invasions are affected by characteristics of invading species, strength of pathway connectivity among world regions and habitat characteristics of invaded regions. These factors may interact in complex ways to drive geographical variation in numbers of invasions among world regions. Understanding the role of these drivers provides information that is crucial to the development of effective biosecurity policies. Here we assemble for the first time a global database of historical invasions of Scolytinae species and explore factors explaining geographical variation in numbers of species invading different regions. This insect group includes several pest species with massive economic and ecological impacts and these beetles are known to be accidentally moved with wood packaging in global trade. Candidate explanatory characteristics included in this analysis are cumulative trade among world regions, size of source species pools, forest area, and climatic similarity of the invaded region with source regions. Species capable of sib-mating comprised the highest proportion on nonnative Scolytines, and these species colonized a higher number of regions than outbreeders. The size of source species pools offered little power in explaining variation in numbers of invasions among world regions nor did climate or forest area. In contrast, cumulative trade had a strong and consistent positive relationship with numbers of Scolytinae species moving from one region to another, and this effect was highest for bark beetles, followed by ambrosia beetles, and was low for seed and twig feeders. We conclude that global variation in Scolytine invasions is primarily driven by variation in trade levels among world regions. Results stress the importance of global trade as the primary driver of historical Scolytinae invasions and we anticipate other hitchhiking species would exhibit similar patterns. One implication of these results is that invasions between certain world regions may be historically low because of past low levels of trade but future economic shifts could result in large numbers of new invasions as a result of increased trade among previously isolated portions of the world. With changing global flow of goods among world regions, it is crucial that biosecurity efforts keep pace to minimize future invasions and their impacts.

Identifiants

pubmed: 32086977
doi: 10.1002/eap.2103
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

e02103

Subventions

Organisme : USDA Forest Service
Pays : International
Organisme : International Cooperation grant CONICET-NSF
Pays : International
Organisme : OP RDE
ID : EVA4.0, No. CZ.02.1.01/0.0/0.0/16_019/0000803
Pays : International
Organisme : Agencia Nacional de Promoción Científica y Tecnológica
ID : PICT 2016-705
Pays : International

Informations de copyright

© 2020 by the Ecological Society of America.

Références

Atkinson, T. H.2019. Bark and ambrosia beetles database. http://www.barkbeetles.info
Barbieri, K., and O. M. G. Keshk. 2016. Correlates of War Project trade data set codebook, version 4.0. http://correlatesofwar.org
Barbieri, K., O. M. G. Keshk, and B. M. Pollins. 2009. Trading data: evaluating our assumptions and coding rules. Conflict Management and Peace Science 26:471-491.
Beaver, R. A. 1979. Host specificity of temperate and tropical animals. Nature 281:139-141.
Bertelsmeier, C., and L. Keller. 2018. Bridgehead effects and role of adaptive evolution in invasive populations. Trends in Ecology & Evolution 33:527-534.
Biedermann, P. H. W., et al. 2019. Bark beetle population dynamics in the Anthropocene: challenges and solutions. Trends in Ecology & Evolution 34:914-924.
Box, E. O. 2002. Vegetation analogs and differences in the Northern and Southern Hemispheres: a global comparison. Plant Ecology 163:139-154.
Branco, M., E. G. Brockerhoff, B. Castagneyrol, C. Orazio, and H. Jactel. 2015. Host range expansion of native insects to exotic trees increases with area of introduction and the presence of congeneric native trees. Journal of Applied Ecology 52:69-77.
Brockerhoff, E. G., J. Bain, M. Kimberley, and M. Knížek. 2006. Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Canadian Journal of Forest Research 36:289-298.
Brockerhoff, E. G., M. Kimberley, A. M. Liebhold, R. A. Haack, and J. F. Cavey. 2013. Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools. Ecology 95:594-601.
CABI. 2019. Invasive species compendium. www.cabi.org/isc
Chapman, D., B. V. Purse, H. E. Roy, and J. M. Bullock. 2017. Global trade networks determine the distribution of invasive non-native species. Global Ecology and Biogeography 26:907-917.
Dawson, W., et al. 2017. Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology & Evolution 1:186.
Early, R., et al. 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nature Communications 7:12485.
Federal Reserve Bank of Minneapolis. 2018. Consumer Price Index (Estimate) 1800. https://www.minneapolisfed.org/community/financial-and-economic-education/cpi-calculator-information/consumer-price-index-1800
Federico, G., and A. Tena-Junguito. 2019. World trade, 1800-1938: A new synthesis. Revista de Historia Economica-Journal of Iberian and Latin American Economic History, 37: 9-41.
Futuyma, D. J., and A. A. Agrawal. 2009. Macroevolution and the biological diversity of plants and herbivores. Proceedings of the National Academy of Sciences USA 106:18054-18061.
Guo, Q., S. Fei, K. M. Potter, A. M. Liebhold, and J. Wen. 2019. Tree diversity regulates forest pest invasion. Proceedings of the National Academy of Sciences USA 116:7382 LP-7386.
Haack, R. A. 2001. Intercepted Scolytidae (Coleoptera) at U.S. ports of entry: 1985-2000. Integrated Pest Management Reviews 6:253-282.
Haack, R. A., R. J. Rabaglia, and J. E. Peña. 2013. Exotic bark and ambrosia beetles in the USA: potential and current invaders. Pages 48-74inJ. E. Pena, editor. Potential invasive pests of agricultural crops. CAB International, Wallingford, UK.
Haack, R. A., et al. 2014. Effectiveness of the international phytosanitary standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States. PLoS ONE 9:e96611.
Hulcr, J., T. H. Atkinson, A. I. Cognato, B. H. Jordal, and D. D. McKenna. 2015. Chapter 2-morphology, taxonomy, and phylogenetics of bark beetles. Pages 41-84 inF. E. Vega and R. W. Hofstetter, editors. Bark Beetles. Academic Press, San Diego, California, USA.
Hulme, P. E. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology 46:10-18.
Hulme, P. E., et al. 2008. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. Journal of Applied Ecology 45:403-414.
Hurley, B. P., J. Garnas, M. J. Wingfield, M. Branco, D. M. Richardson, and B. Slippers. 2016. Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biological Invasions 18:921-933.
Jordal, B. H., R. A. Beaver, and L. R. Kirkendall. 2001. Breaking taboos in the tropics: incest promotes colonization by wood-boring beetles. Global Ecology and Biogeography 10:345-357.
Kirkendall, L. R. 2018. Invasive bark beetles (Coleoptera, Curculionidae, Scolytinae) in Chile and Argentina, including two species new for South America, and the correct identity of the Orthotomicus species in Chile and Argentina. Diversity 10:40.
Kirkendall, L. R., and M. Faccoli. 2010. Bark beetles and pinhole borers (Curculionidae, Scolytinae, Platypodinae) alien to Europe. ZooKeys 56:227-251.
Kirkendall, L. R., P. H. W. Biedermann, and B. H. Jordal. 2015. Chapter 3-Evolution and diversity of bark and ambrosia beetles. Pages 85-156 in F. E. Vega and R. W. Hofstetter, editors. Bark beetles. Academic Press, San Diego, California, USA.
Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel. 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15:259-263.
Lantschner, M. V., T. H. Atkinson, J. C. Corley, and A. M. Liebhold. 2017. Predicting North American Scolytinae invasions in the Southern Hemisphere. Ecological Applications 27:66-77.
Liebhold, A. M., D. G. McCullough, L. M. Blackburn, S. J. Frankel, B. Von Holle, and J. E. Aukema. 2013. A highly aggregated geographical distribution of forest pest invasions in the USA. Diversity and Distributions 19:1208-1216.
Liebhold, A. M., T. Yamanaka, A. Roques, S. Augustin, S. L. Chown, E. G. Brockerhoff, and P. Pyšek. 2016. Global compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways. Biological Invasions 18:893-905.
Liebhold, A. M., E. G. Brockerhoff, and M. Kimberley. 2017. Depletion of heterogeneous source species pools predicts future invasion rates. Journal of Applied Ecology 54:1968-1977.
Liebhold, A. M., T. Yamanaka, A. Roques, S. Augustin, S. L. Chown, E. G. Brockerhoff, and P. Pyšek. 2018. Plant diversity drives global patterns of insect invasions. Scientific Reports 8:12095.
Marini, L., R. A. Haack, R. J. Rabaglia, E. Petrucco Toffolo, A. Battisti, and M. Faccoli. 2011. Exploring associations between international trade and environmental factors with establishment patterns of exotic Scolytinae. Biological Invasions 13:2275-2288.
Mattson, W., H. Vanhanen, T. Veteli, S. Sivonen, and P. Niemelä. 2007. Few immigrant phytophagous insects on woody plants in Europe: legacy of the European crucible? Biological Invasions 9:957-974.
McCullough, D. G., T. T. Work, J. F. Cavey, A. M. Liebhold, and D. Marshall. 2006. Interceptions of nonindigenous plant pests at US ports of entry and border crossings over a 17-year period. Biological Invasions 8:611-630.
Meurisse, N., D. Rassati, B. P. Hurley, E. G. Brockerhoff, and R. A. Haack. 2019. Common pathways by which non-native forest insects move internationally and domestically. Journal of Pest Science 92:13-27.
Olson, D. M., et al. 2001. Terrestrial ecoregions of the world: a new map of life on earth. BioScience 51:933-938.
Peer, K., and M. Taborsky. 2005. Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. Evolution 59:317-323.
Poland, T. M., and D. Rassati. 2019. Improved biosecurity surveillance of non-native forest insects: a review of current methods. Journal of Pest Science 92:37-49.
Pyšek, P., et al. 2010. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proceedings of the National Academy of Sciences USA 107:12157-12162.
Raffa, K. F., B. H. Aukema, B. J. Bentz, A. L. Carroll, J. A. Hicke, M. G. Turner, and W. H. Romme. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience 58:501-517.
Rassati, D., M. Faccoli, R. A. Haack, R. J. Rabaglia, E. Petrucco Toffolo, A. Battisti, and L. Marini. 2016. Bark and ambrosia beetles show different invasion patterns in the USA. PLoS ONE 11:e0158519.
Schebeck, M., E. M. Hansen, A. Schopf, G. J. Ragland, C. Stauffer, and B. J. Bentz. 2017. Diapause and overwintering of two spruce bark beetle species. Physiological Entomology 42:200-210.
Seebens, H., et al. 2018. Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences USA 115:E2264-E2273.
van Kleunen, M., et al. 2015. Global exchange and accumulation of non-native plants. Nature 525:100-103.
Vega, F. E., F. Infante, and A. J. Johnson. 2015. Chapter 11-The genus Hypothenemus, with emphasis on H. hampei, the coffee berry borer. Pages 427-494inF. E. Vega and R. W. B. T.-B. B. Hofstetter, editors. Academic Press, San Diego, California, USA.
Wingfield, M. J., E. G. Brockerhoff, B. D. Wingfield, and B. Slippers. 2015. Planted forest health: The need for a global strategy. Science 349:832-836.
Wood, S. L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6:1-1356.
Wood, S. L. 2007. Bark and ambrosia beetles of South America (Coleoptera: Scolytidae). Page 900. Monte L. Bean Life Science Museum, Brigham Young University, Provo, Utah, USA.
Wood, S. L., and D. E. Bright. 1992. A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2. Great Basin Naturalist Memoirs 13:1-835.

Auteurs

M Victoria Lantschner (MV)

Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB), INTA - CONICET, Modesta Victoria 4450, Bariloche, Argentina.

Juan C Corley (JC)

Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB), INTA - CONICET, Modesta Victoria 4450, Bariloche, Argentina.
Departamento de Ecología, CRUB Universidad Nacional del Comahue, Quintral 1250, Bariloche, Argentina.

Andrew M Liebhold (AM)

Northern Research Station, USDA Forest Service, 180 Canfield Street, Morgantown, West Virginia, 26505, USA.
Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00, Praha 6, Suchdol, Czech Republic.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH