Human FCHO1 deficiency reveals role for clathrin-mediated endocytosis in development and function of T cells.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
25 02 2020
Historique:
received: 14 01 2019
accepted: 23 01 2020
entrez: 27 2 2020
pubmed: 27 2 2020
medline: 23 5 2020
Statut: epublish

Résumé

Clathrin-mediated endocytosis (CME) is critical for internalisation of molecules across cell membranes. The FCH domain only 1 (FCHO1) protein is key molecule involved in the early stages of CME formation. The consequences of mutations in FCHO1 in humans were unknown. We identify ten unrelated patients with variable T and B cell lymphopenia, who are homozygous for six distinct mutations in FCHO1. We demonstrate that these mutations either lead to mislocalisation of the protein or prevent its interaction with binding partners. Live-cell imaging of cells expressing mutant variants of FCHO1 provide evidence of impaired formation of clathrin coated pits (CCP). Patient T cells are unresponsive to T cell receptor (TCR) triggering. Internalisation of the TCR receptor is severely perturbed in FCHO1-deficient Jurkat T cells but can be rescued by expression of wild-type FCHO1. Thus, we discovered a previously unrecognised critical role of FCHO1 and CME during T-cell development and function in humans.

Identifiants

pubmed: 32098969
doi: 10.1038/s41467-020-14809-9
pii: 10.1038/s41467-020-14809-9
pmc: PMC7042371
doi:

Substances chimiques

FCHO1 protein, human 0
Membrane Proteins 0
Receptors, Antigen, T-Cell 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1031

Commentaires et corrections

Type : ErratumIn

Références

Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes Aegypti. L. J. Cell Biol. 20, 313–332 (1964).
pubmed: 14126875 pmcid: 2106398 doi: 10.1083/jcb.20.2.313
Pearse, B. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc. Natl Acad. Sci. USA 73, 1255–1259 (1976).
pubmed: 1063406 pmcid: 430241 doi: 10.1073/pnas.73.4.1255
Robinson, M. S. Forty years of clathrin-coated vesicles. Traffic 16, 1210–1238 (2015).
pubmed: 26403691 doi: 10.1111/tra.12335
Cocucci, E., Aguet, F., Boulant, S. & Kirchhausen, T. The first five seconds in the life of a clathrin-coated pit. Cell 150, 495–507 (2012).
pubmed: 22863004 pmcid: 3413093 doi: 10.1016/j.cell.2012.05.047
Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284 (2010).
pubmed: 20448150 pmcid: 2883440 doi: 10.1126/science.1188462
Pechstein, A. et al. Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2. Proc. Natl Acad. Sci. USA 107, 4206–4211 (2010).
pubmed: 20160082 pmcid: 2840162 doi: 10.1073/pnas.0911073107
Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).
pubmed: 17035995 doi: 10.1038/nature05185
McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).
pubmed: 21779028 doi: 10.1038/nrm3151
Dannhauser, P. N. & Ungewickell, E. J. Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nat. Cell Biol. 14, 634–639 (2012).
pubmed: 22522172 doi: 10.1038/ncb2478
Koh, T. W. et al. Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. J. Cell Biol. 178, 309–322 (2007).
pubmed: 17620409 pmcid: 2064449 doi: 10.1083/jcb.200701030
Kostmann, R. Hereditär reticulos––en ny systemsjukdom. Sven. Läkartidningen 47, 2861 (1950).
Bruton, O. C. Agammaglobulinemia. Pediatrics 9, 722–728 (1952).
pubmed: 14929630 doi: 10.1542/peds.9.6.722
Picard, C. et al. International union of immunological societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J. Clin. Immunol. 38, 96–128 (2018).
pubmed: 29226302 doi: 10.1007/s10875-017-0464-9
Ma, L. et al. Transient Fcho1/2Eps15/RAP-2 nanoclusters prime the AP-2 clathrin adaptor for cargo binding. Dev. Cell 37, 428–443 (2016).
pubmed: 27237791 pmcid: 4921775 doi: 10.1016/j.devcel.2016.05.003
Doyon, J. B. et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat. Cell Biol. 13, 331–337 (2011).
pubmed: 21297641 pmcid: 4113319 doi: 10.1038/ncb2175
Lyszkiewicz, M. et al. miR-181a/b-1 controls thymic selection of Treg cells and tunes their suppressive capacity. PLoS Biol. 17, e2006716 (2019).
pubmed: 30856173 pmcid: 6428341 doi: 10.1371/journal.pbio.2006716
Zietara, N. et al. Critical role for miR-181a/b-1 in agonist selection of invariant natural killer T cells. Proc. Natl Acad. Sci. USA 110, 7407–7412 (2013).
pubmed: 23589855 pmcid: 3645533 doi: 10.1073/pnas.1221984110
Gaud, G., Lesourne, R. & Love, P. E. Regulatory mechanisms in T cell receptor signalling. Nat. Rev. Immunol. 18, 485–497 (2018).
pubmed: 29789755 doi: 10.1038/s41577-018-0020-8
Telerman, A. et al. Internalization of human T lymphocyte receptors. Eur. J. Immunol. 17, 991–997 (1987).
pubmed: 3038564 doi: 10.1002/eji.1830170715
Dietrich, J., Hou, X., Wegener, A. M. & Geisler, C. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor. EMBO J. 13, 2156–2166 (1994).
pubmed: 8187769 pmcid: 395069 doi: 10.1002/j.1460-2075.1994.tb06492.x
Boyer, C. et al. T cell receptor/CD3 complex internalization following activation of a cytolytic T cell clone: evidence for a protein kinase C-independent staurosporine-sensitive step. Eur. J. Immunol. 21, 1623–1634 (1991).
pubmed: 1829410 doi: 10.1002/eji.1830210707
Crotzer, V. L., Mabardy, A. S., Weiss, A. & Brodsky, F. M. T cell receptor engagement leads to phosphorylation of clathrin heavy chain during receptor internalization. J. Exp. Med. 199, 981–991 (2004).
pubmed: 15067034 pmcid: 2211883 doi: 10.1084/jem.20031105
Dietrich, J., Kastrup, J., Nielsen, B. L., Odum, N. & Geisler, C. Regulation and function of the CD3gamma DxxxLL motif: a binding site for adaptor protein-1 and adaptor protein-2 in vitro. J. Cell Biol. 138, 271–281 (1997).
pubmed: 9230070 pmcid: 2138198 doi: 10.1083/jcb.138.2.271
Balagopalan, L., Barr, V. A. & Samelson, L. E. Endocytic events in TCR signaling: focus on adapters in microclusters. Immunol. Rev. 232, 84–98 (2009).
pubmed: 19909358 pmcid: 3138075 doi: 10.1111/j.1600-065X.2009.00840.x
Reider, A. et al. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J. 28, 3103–3116 (2009).
pubmed: 19713939 pmcid: 2771086 doi: 10.1038/emboj.2009.248
Apel, A. R. et al. Syp1 regulates the clathrin-mediated and clathrin-independent endocytosis of multiple cargo proteins through a novel sorting motif. Mol. Biol. Cell 28, 2434–2448 (2017).
pubmed: 28701344 pmcid: 5576906 doi: 10.1091/mbc.e15-10-0731
Finkelshtein, D., Werman, A., Novick, D., Barak, S. & Rubinstein, M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 110, 7306–7311 (2013).
pubmed: 23589850 pmcid: 3645523 doi: 10.1073/pnas.1214441110
Kim, I. S. et al. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein. Proc. Natl Acad. Sci. USA 114, E28–E36 (2017).
pubmed: 27974607
Cavrois, M., De Noronha, C. & Greene, W. C. A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nat. Biotechnol. 20, 1151–1154 (2002).
pubmed: 12355096 doi: 10.1038/nbt745
Michel, N., Allespach, I., Venzke, S., Fackler, O. T. & Keppler, O. T. The Nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to downregulate cell-surface CCR5 and CD4. Curr. Biol. 15, 714–723 (2005).
pubmed: 15854903 doi: 10.1016/j.cub.2005.02.058
Venzke, S., Michel, N., Allespach, I., Fackler, O. T. & Keppler, O. T. Expression of Nef downregulates CXCR4, the major coreceptor of human immunodeficiency virus, from the surfaces of target cells and thereby enhances resistance to superinfection. J. Virol. 80, 11141–11152 (2006).
pubmed: 16928758 pmcid: 1642143 doi: 10.1128/JVI.01556-06
Homann, S. et al. Determinants in HIV-1 Nef for enhancement of virus replication and depletion of CD4+ T lymphocytes in human lymphoid tissue ex vivo. Retrovirology 6, 6 (2009).
pubmed: 19146681 pmcid: 2630989 doi: 10.1186/1742-4690-6-6
Mayle, K. M., Le, A. M. & Kamei, D. T. The intracellular trafficking pathway of transferrin. Biochim Biophys. Acta 1820, 264–281 (2012).
pubmed: 21968002 doi: 10.1016/j.bbagen.2011.09.009
Schmitt, T. M. & Zuniga-Pflucker, J. C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).
pubmed: 12479821 doi: 10.1016/S1074-7613(02)00474-0
Daniel, J. A. et al. Phenothiazine-derived antipsychotic drugs inhibit dynamin and clathrin-mediated endocytosis. Traffic 16, 635–654 (2015).
pubmed: 25693808 doi: 10.1111/tra.12272
von Boehmer, H. Unique features of the pre-T-cell receptor alpha-chain: not just a surrogate. Nat. Rev. Immunol. 5, 571–577 (2005).
doi: 10.1038/nri1636
Gascoigne, N. R., Rybakin, V., Acuto, O. & Brzostek, J. TCR signal strength and T cell development. Annu Rev. Cell Dev. Biol. 32, 327–348 (2016).
pubmed: 27712102 doi: 10.1146/annurev-cellbio-111315-125324
Hollopeter, G. et al. The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex. Elife 3, 1–23 (2014).
Umasankar, P. K. et al. Distinct and separable activities of the endocytic clathrin-coat components Fcho1/2 and AP-2 in developmental patterning. Nat. Cell Biol. 14, 488–501 (2012).
pubmed: 22484487 pmcid: 3354769 doi: 10.1038/ncb2473
Dergai, M., Iershov, A., Novokhatska, O., Pankivskyi, S. & Rynditch, A. Evolutionary changes on the way to clathrin-mediated endocytosis in animals. Genome Biol. Evol. 8, 588–606 (2016).
pubmed: 26872775 pmcid: 4824007 doi: 10.1093/gbe/evw028
Mulkearns, E. E. & Cooper, J. A. FCH domain only-2 organizes clathrin-coated structures and interacts with Disabled-2 for low-density lipoprotein receptor endocytosis. Mol. Biol. Cell 23, 1330–1342 (2012).
pubmed: 22323290 pmcid: 3315808 doi: 10.1091/mbc.e11-09-0812
Henne, W. M. et al. Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15, 839–852 (2007).
pubmed: 17540576 doi: 10.1016/j.str.2007.05.002
Brownlie, R. J. & Zamoyska, R. T cell receptor signalling networks: branched, diversified and bounded. Nat. Rev. Immunol. 13, 257–269 (2013).
pubmed: 23524462 doi: 10.1038/nri3403
Miosge, L. & Zamoyska, R. Signalling in T-cell development: is it all location, location, location? Curr. Opin. Immunol. 19, 194–199 (2007).
pubmed: 17306519 doi: 10.1016/j.coi.2007.02.008
Ohno, H. et al. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269, 1872–1875 (1995).
pubmed: 7569928 doi: 10.1126/science.7569928
Compeer, E. B. et al. A mobile endocytic network connects clathrin-independent receptor endocytosis to recycling and promotes T cell activation. Nat. Commun. 9, 1597 (2018).
pubmed: 29686427 pmcid: 5913236 doi: 10.1038/s41467-018-04088-w
Monjas, A., Alcover, A. & Alarcon, B. Engaged and bystander T cell receptors are down-modulated by different endocytotic pathways. J. Biol. Chem. 279, 55376–55384 (2004).
pubmed: 15516342 doi: 10.1074/jbc.M409342200
Finetti, F., Onnis, A. & Baldari, C. T. Regulation of vesicular traffic at the T cell immune synapse: lessons from the primary cilium. Traffic 16, 241–249 (2015).
pubmed: 25393976 doi: 10.1111/tra.12241
Krangel, M. S. Endocytosis and recycling of the T3-T cell receptor complex. The role of T3 phosphorylation. J. Exp. Med. 165, 1141–1159 (1987).
pubmed: 3104527 doi: 10.1084/jem.165.4.1141
Dietrich, J. et al. Ligand-induced TCR down-regulation is not dependent on constitutive TCR cycling. J. Immunol. 168, 5434–5440 (2002).
pubmed: 12023336 doi: 10.4049/jimmunol.168.11.5434
Calzoni, E. et al. F-BAR domain only protein 1 (FCHO1) deficiency is a novel cause of combined immune deficiency in human subjects. J. Allergy Clin. Immunol. 143, 2317–2321 e12 (2019).
pubmed: 30822429 pmcid: 6701838 doi: 10.1016/j.jaci.2019.02.014
Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).
pubmed: 19561590 doi: 10.1038/nprot.2009.86
Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. Chapter 7, Unit7.20 (2013).
pubmed: 23315928
Field, M. A., Cho, V., Andrews, T. D. & Goodnow, C. C. Reliably detecting clinically important variants requires both combined variant calls and optimized filtering strategies. PLoS ONE 10, e0143199 (2015).
pubmed: 26600436 pmcid: 4658170 doi: 10.1371/journal.pone.0143199
DeLano, W. L. Pymol: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40, 82–92 (2002).
Benesch, S. et al. N-WASP deficiency impairs EGF internalization and actin assembly at clathrin-coated pits. J. Cell Sci. 118, 3103–3115 (2005).
pubmed: 15985465 doi: 10.1242/jcs.02444
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772

Auteurs

Marcin Łyszkiewicz (M)

Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany. Marcin.Lyszkiewicz@med.uni-muenchen.de.
Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Munich, Germany. Marcin.Lyszkiewicz@med.uni-muenchen.de.

Natalia Ziętara (N)

Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.
Institute for Immunology, Biomedical Center Munich, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Munich, Germany.

Laura Frey (L)

Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.

Ulrich Pannicke (U)

Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.

Marcel Stern (M)

Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.

Yanshan Liu (Y)

Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.

Yanxin Fan (Y)

Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.

Jacek Puchałka (J)

Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.

Sebastian Hollizeck (S)

Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.

Ido Somekh (I)

Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.

Meino Rohlfs (M)

Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany.

Tuğba Yilmaz (T)

Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey.

Ekrem Ünal (E)

Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey.

Musa Karakukcu (M)

Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey.

Türkan Patiroğlu (T)

Department of Pediatrics, Division of Pediatric Hematology & Oncology, Erciyes University, Kayseri, Turkey.
Department of Pediatrics, Division of Pediatric Immunology, Erciyes University, Kayseri, Turkey.

Christina Kellerer (C)

Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.

Ebru Karasu (E)

Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.

Karl-Walter Sykora (KW)

Department of Pediatric Hematology/Oncology, Hannover Medical School, Hannover, Germany.

Atar Lev (A)

Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel.

Amos Simon (A)

Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel.

Raz Somech (R)

Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel.

Joachim Roesler (J)

Department of Pediatrics, Carl Gustav Carus Technical University Dresden, Dresden, Germany.

Manfred Hoenig (M)

Department of Pediatrics, University Medical Centre Ulm, Ulm, Germany.

Oliver T Keppler (OT)

Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.
German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.

Klaus Schwarz (K)

Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.
Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg, Hessen, Germany.

Christoph Klein (C)

Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany. Christoph.Klein@med.uni-muenchen.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH