Association between ossification of the longitudinal ligament of the cervical spine and arteriosclerosis in the carotid artery.
Arteriosclerosis
/ diagnostic imaging
Carotid Arteries
/ diagnostic imaging
Carotid Artery, Common
/ diagnostic imaging
Cervical Vertebrae
/ diagnostic imaging
Female
Humans
Longitudinal Ligaments
/ diagnostic imaging
Male
Middle Aged
Musculoskeletal System
/ diagnostic imaging
Neck
/ diagnostic imaging
Ossification of Posterior Longitudinal Ligament
/ diagnostic imaging
Osteogenesis
/ physiology
Spinal Cord Diseases
/ diagnostic imaging
Tomography, X-Ray Computed
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 02 2020
25 02 2020
Historique:
received:
04
11
2019
accepted:
11
02
2020
entrez:
27
2
2020
pubmed:
27
2
2020
medline:
13
11
2020
Statut:
epublish
Résumé
Although several risk factors have been reported for cervical ossification of the longitudinal ligament (OPLL), most evaluations made in the past were based on plain X-ray, not on computed tomography (CT) scan. In this study, we aimed to clarify novel risk factors for cervical OPLL in asymptomatic subjects undergoing CT scan as their routine medical checkups. A total of 1789 Japanese asymptomatic subjects who underwent CT scan for the whole body as their routine medical checkups were retrospectively reviewed. The medical checkup also included laboratory examinations, bone mineral status, and ultrasound of the carotid artery. As a result, cervical OPLL was seen in 120 subjects (6.7%). As we compared the demographic and clinical data between subjects with and without OPLL, OPLL group showed older age, higher proportion of male sex, higher BMI, higher incidence of hypertension, higher levels of blood HbA1c and triglyceride, and higher incidence of plaques in the carotid artery. A multivariate logistic regression analysis revealed that age (Odds ratio (OR):1.03), male sex (OR: 1.91), and the presence of plaque in the carotid artery (OR: 1.71) were risk factors for OPLL. To the best of our knowledge, this is the first report to reveal an association between OPLL and arteriosclerotic lesions.
Identifiants
pubmed: 32098972
doi: 10.1038/s41598-020-60248-3
pii: 10.1038/s41598-020-60248-3
pmc: PMC7042362
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3369Références
Stapleton, C. J., Pham, M. H., Attenello, F. J. & Hsieh, P. C. Ossification of the posterior longitudinal ligament: genetics and pathophysiology. Neurosurg. Focus. 30, E6, https://doi.org/10.3171/2010.12.FOCUS10271 (2011).
doi: 10.3171/2010.12.FOCUS10271
pubmed: 21434822
Yan, L. et al. The Pathogenesis of ossification of the posterior longitudinal ligament. Aging Dis. 8, 570–582, https://doi.org/10.14336/AD.2017.0201 (2017).
doi: 10.14336/AD.2017.0201
pubmed: 28966802
pmcid: 5614322
Terayama, K. Genetic studies on ossification of the posterior longitudinal ligament of the spine. Spine 14, 1184–1191 (1989).
doi: 10.1097/00007632-198911000-00009
Yoshimura, N. et al. Prevalence and progression of radiographic ossification of the posterior longitudinal ligament and associated factors in the Japanese population: a 3-year follow-up of the ROAD study. Osteoporos. Int. 25, 1089–1098, https://doi.org/10.1007/s00198-013-2489-0 (2014).
doi: 10.1007/s00198-013-2489-0
pubmed: 23974860
Shin, J., Choi, J. Y., Kim, Y. W., Chang, J. S. & Yoon, S. Quantification of risk factors for cervical ossification of the posterior longitudinal ligament in Korean populations: A nationwide population-based case-control study. Spine (Phila Pa 1976), https://doi.org/10.1097/BRS.0000000000003027 (2019).
doi: 10.1097/BRS.0000000000003027
Washio, M. et al. Sleeping habit and other life styles in the prime of life and risk for ossification of the posterior longitudinal ligament of the spine (OPLL): a case-control study in Japan. J. Epidemiol. 14, 168–173, https://doi.org/10.2188/jea.14.168 (2004).
doi: 10.2188/jea.14.168
pubmed: 15478672
Chaput, C. D., Siddiqui, M. & Rahm, M. D. Obesity and calcification of the ligaments of the spine: a comprehensive CT analysis of the entire spine in a random trauma population. Spine J, https://doi.org/10.1016/j.spinee.2019.03.003 (2019).
doi: 10.1016/j.spinee.2019.03.003
Moon, B. J. et al. Prevalence, incidence, comorbidity, and mortality rates of ossification of posterior longitudinal ligament in the cervical spine: A nested case-control cohort study. World Neurosurg. 117, e323–e328, https://doi.org/10.1016/j.wneu.2018.06.023 (2018).
doi: 10.1016/j.wneu.2018.06.023
pubmed: 29906583
Iwasaki, K. et al. Uni-axial cyclic stretch induces Cbfa1 expression in spinal ligament cells derived from patients with ossification of the posterior longitudinal ligament. Calcif. Tissue Int. 74, 448–457, https://doi.org/10.1007/s00223-002-0021-1 (2004).
doi: 10.1007/s00223-002-0021-1
pubmed: 14639470
Matsunaga, S. & Sakou, T. Ossification of the posterior longitudinal ligament of the cervical spine: etiology and natural history. Spine 37, E309–314, https://doi.org/10.1097/BRS.0b013e318241ad33 (2012).
doi: 10.1097/BRS.0b013e318241ad33
pubmed: 22146284
Fujimori, T. et al. Prevalence, concomitance, and distribution of ossification of the spinal ligaments: Results of whole spine CT scans in 1500 Japanese patients. Spine 41, 1668–1676, https://doi.org/10.1097/BRS.0000000000001643 (2016).
doi: 10.1097/BRS.0000000000001643
pubmed: 27120057
Goto, K. et al. Involvement of insulin-like growth factor I in development of ossification of the posterior longitudinal ligament of the spine. Calcif. Tissue Int. 62, 158–165 (1998).
doi: 10.1007/s002239900410
Kawa-Uchi, T. et al. Messenger RNA expression of the genes encoding receptors for bone morphogenetic protein (BMP) and transforming growth factor-beta (TGF-beta) in the cells from the posterior longitudinal ligament in cervical spine. Endocr. 5, 307–314, https://doi.org/10.1007/BF02739064 (1996).
doi: 10.1007/BF02739064
Ren, L. et al. The roles of inflammatory cytokines in the pathogenesis of ossification of ligamentum flavum. Am. J. Transl. Res. 5, 582–585 (2013).
pubmed: 24093055
pmcid: 3786265
Shi, L. et al. Ossification of the posterior ligament is mediated by osterix via inhibition of the beta-catenin signaling pathway. Exp. Cell Res. 349, 53–59, https://doi.org/10.1016/j.yexcr.2016.09.019 (2016).
doi: 10.1016/j.yexcr.2016.09.019
pubmed: 27693496
Nakajima, M., Kou, I. & Ohashi, H. Genetic Study Group of the Investigation Committee on the Ossification of Spinal, L. & Ikegawa, S. Identification and functional characterization of RSPO2 as a susceptibility gene for ossification of the posterior longitudinal ligament of the spine. Am. J. Hum. Genet. 99, 202–207, https://doi.org/10.1016/j.ajhg.2016.05.018 (2016).
doi: 10.1016/j.ajhg.2016.05.018
pubmed: 27374772
pmcid: 5005442
Kawaguchi, Y. et al. Serum biomarkers in patients with ossification of the posterior longitudinal ligament (OPLL): Inflammation in OPLL. PLoS One 12, e0174881, https://doi.org/10.1371/journal.pone.0174881 (2017).
doi: 10.1371/journal.pone.0174881
pubmed: 28467440
pmcid: 5414934
Sell, S. & Schleh, T. C-reactive protein as an early indicator of the formation of heterotopic ossifications after total hip replacement. Arch. Orthop. Trauma. Surg. 119, 205–207 (1999).
doi: 10.1007/s004020050391
Kokubo, Y. et al. Impact of intima-media thickness progression in the common carotid arteries on the risk of incident cardiovascular disease in the Suita study. J Am Heart Assoc 7, https://doi.org/10.1161/JAHA.117.007720 (2018).
Polak, J. F. et al. The value of carotid artery plaque and intima-media thickness for incident cardiovascular disease: the multi-ethnic study of atherosclerosis. J. Am. Heart Assoc. 2, e000087, https://doi.org/10.1161/JAHA.113.000087 (2013).
doi: 10.1161/JAHA.113.000087
pubmed: 23568342
pmcid: 3647272
Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695, https://doi.org/10.1056/NEJMra043430 (2005).
doi: 10.1056/NEJMra043430
pubmed: 15843671
Cesari, M. et al. Inflammatory markers and cardiovascular disease (The Health, Aging and Body Composition [Health ABC] Study). Am. J. Cardiol. 92, 522–528, https://doi.org/10.1016/s0002-9149(03)00718-5 (2003).
doi: 10.1016/s0002-9149(03)00718-5
pubmed: 12943870
Krabbe, K. S., Pedersen, M. & Bruunsgaard, H. Inflammatory mediators in the elderly. Exp. Gerontol. 39, 687–699, https://doi.org/10.1016/j.exger.2004.01.009 (2004).
doi: 10.1016/j.exger.2004.01.009
pubmed: 15130663
Matsunaga, S. et al. Pathogenesis of myelopathy in patients with ossification of the posterior longitudinal ligament. J. Neurosurg. 96, 168–172 (2002).
pubmed: 12450279
Tsuyama, N. Ossification of the posterior longitudinal ligament of the spine. Clin Orthop Relat Res, 71–84 (1984).
Nambi, V. et al. Common carotid artery intima-media thickness is as good as carotid intima-media thickness of all carotid artery segments in improving prediction of coronary heart disease risk in the Atherosclerosis Risk in Communities (ARIC) study. Eur. Heart J. 33, 183–190, https://doi.org/10.1093/eurheartj/ehr192 (2012).
doi: 10.1093/eurheartj/ehr192
pubmed: 21666250