The association of Chlamydia trachomatis and Mycoplasma genitalium infection with the vaginal metabolome.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
25 02 2020
Historique:
received: 30 08 2019
accepted: 03 02 2020
entrez: 27 2 2020
pubmed: 27 2 2020
medline: 11 11 2020
Statut: epublish

Résumé

Chlamydia trachomatis (CT) and Mycoplasma genitalium (MG) are two highly prevalent bacterial sexually transmitted infections (STIs) with a significant rate of co-infection in some populations. Vaginal metabolites are influenced by resident vaginal microbiota, affect susceptibility to sexually transmitted infections (STIs), and may impact local inflammation and patient symptoms. Examining the vaginal metabolome in the context of CT mono (CT+) and CT/MG co-infection (CT+/MG+) may identify biomarkers for infection or provide new insights into disease etiology and pathogenesis. Yet, the vaginal metabolome in the setting of CT infection is understudied and the composition of the vaginal metabolome in CT/MG co-infected women is unknown. Therefore, in this analysis, we used an untargeted metabolomic approach combined with 16S rRNA gene amplicon sequencing to characterize the vaginal microbiota and metabolomes of CT+, CT+/MG+, and uninfected women. We found that CT+ and CT+/MG+ women had distinct vaginal metabolomic profiles as compared to uninfected women both before and after adjustment for the vaginal microbiota. This study provides important foundational data documenting differences in the vaginal metabolome between CT+, CT+/MG+ and uninfected women. These data may guide future mechanistic studies that seek to provide insight into the pathogenesis of CT and CT/MG infections.

Identifiants

pubmed: 32098988
doi: 10.1038/s41598-020-60179-z
pii: 10.1038/s41598-020-60179-z
pmc: PMC7042340
doi:

Types de publication

Clinical Trial Journal Article Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3420

Subventions

Organisme : NIAID NIH HHS
ID : K23 AI125715
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI116799
Pays : United States

Références

Molenaar, M. C., Singer, M. & Ouburg, S. The two-sided role of the vaginal microbiome in Chlamydia trachomatis and Mycoplasma genitalium pathogenesis. J. Reprod. Immunol. 130, 11–17, https://doi.org/10.1016/j.jri.2018.08.006 (2018).
doi: 10.1016/j.jri.2018.08.006 pubmed: 30149363
Aldunate, M. et al. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front. Physiol. 6, 164, https://doi.org/10.3389/fphys.2015.00164 (2015).
doi: 10.3389/fphys.2015.00164 pubmed: 26082720 pmcid: 4451362
McKinnon, L. R. et al. The Evolving Facets of Bacterial Vaginosis: Implications for HIV Transmission. AIDS Res. Hum. Retroviruses 35, 219–228, https://doi.org/10.1089/AID.2018.0304 (2019).
doi: 10.1089/AID.2018.0304 pubmed: 30638028 pmcid: 6434601
Boskey, E. R., Cone, R. A., Whaley, K. J. & Moench, T. R. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum. Reprod. 16, 1809–1813 (2001).
doi: 10.1093/humrep/16.9.1809
Gong, Z., Luna, Y., Yu, P. & Fan, H. Lactobacilli inactivate Chlamydia trachomatis through lactic acid but not H2O2. PLoS One 9, e107758, https://doi.org/10.1371/journal.pone.0107758 (2014).
doi: 10.1371/journal.pone.0107758 pubmed: 25215504 pmcid: 25215504
Tuddenham, S. & Ghanem, K. G. A microbiome variable in the HIV-prevention equation. Sci. 356, 907–908, https://doi.org/10.1126/science.aan6103 (2017).
doi: 10.1126/science.aan6103
Martin, D. H. & Marrazzo, J. M. The Vaginal Microbiome: Current Understanding and Future Directions. J. Infect. Dis. 214(Suppl 1), S36–41, https://doi.org/10.1093/infdis/jiw184 (2016).
doi: 10.1093/infdis/jiw184 pubmed: 27449871 pmcid: 27449871
Nelson, T. et al. Vaginal Biogenic Amines: Biomarkers of Bacterial Vaginosis or Precursors to Vaginal Dysbiosis? Frontiers in physiology 6 (2015).
Srinivasan, S. et al. Metabolic signatures of bacterial vaginosis. MBio 6, https://doi.org/10.1128/mBio.00204-15 (2015).
Yeoman, C. J. et al. A multi-omic systems-based approach reveals metabolic markers of bacterial vaginosis and insight into the disease. PLoS One 8, e56111, https://doi.org/10.1371/journal.pone.0056111 (2013).
doi: 10.1371/journal.pone.0056111 pubmed: 23405259 pmcid: 3566083
Vitali, B. et al. Vaginal microbiome and metabolome highlight specific signatures of bacterial vaginosis. Eur. J. Clin. Microbiol. Infect. Dis. 34, 2367–2376, https://doi.org/10.1007/s10096-015-2490-y (2015).
doi: 10.1007/s10096-015-2490-y
Laghi, L. et al. Rifaximin modulates the vaginal microbiome and metabolome in women affected by bacterial vaginosis. Antimicrob. Agents Chemother. 58, 3411–3420, https://doi.org/10.1128/AAC.02469-14 (2014).
doi: 10.1128/AAC.02469-14 pubmed: 24709255 pmcid: 4068465
Ziklo, N., Huston, W. M., Taing, K., Katouli, M. & Timms, P. In vitro rescue of genital strains of Chlamydia trachomatis from interferon-gamma and tryptophan depletion with indole-positive, but not indole-negative Prevotella spp. BMC Microbiol. 16, 286, https://doi.org/10.1186/s12866-016-0903-4 (2016).
doi: 10.1186/s12866-016-0903-4 pubmed: 27914477 pmcid: 5135834
Ziklo, N., Vidgen, M. E., Taing, K., Huston, W. M. & Timms, P. Dysbiosis of the Vaginal Microbiota and Higher Vaginal Kynurenine/Tryptophan Ratio Reveals an Association with Chlamydia trachomatis Genital Infections. Front. Cell Infect. Microbiol. 8, 1, https://doi.org/10.3389/fcimb.2018.00001 (2018).
doi: 10.3389/fcimb.2018.00001 pubmed: 29404279 pmcid: 5778109
Jordan, S. J. et al. Lower Levels of Cervicovaginal Tryptophan Are Associated With Natural Clearance of Chlamydia in Women. J. Infect. Dis. 215, 1888–1892, https://doi.org/10.1093/infdis/jix240 (2017).
doi: 10.1093/infdis/jix240 pubmed: 28520912 pmcid: 5853498
Borgogna, J. C. et al. The vaginal metabolome and microbiota of cervical HPV-positive and HPV-negative women: a cross-sectional analysis. BJOG: An. Int. J. Obstet. Gynaecol. 127, 182–192, https://doi.org/10.1111/1471-0528.15981 (2020).
doi: 10.1111/1471-0528.15981
Onderdonk, A. B., Delaney, M. L. & Fichorova, R. N. The Human Microbiome during Bacterial Vaginosis. Clin. microbiology Rev. 29, 223–238, https://doi.org/10.1128/CMR.00075-15 (2016).
doi: 10.1128/CMR.00075-15
Lokken, E. M. et al. Association of Recent Bacterial Vaginosis With Acquisition of Mycoplasma genitalium. Am. J. Epidemiol. 186, 194–201, https://doi.org/10.1093/aje/kwx043 (2017).
doi: 10.1093/aje/kwx043 pubmed: 28472225 pmcid: 5860020
Brotman, R. M. et al. Bacterial vaginosis assessed by gram stain and diminished colonization resistance to incident gonococcal, chlamydial, and trichomonal genital infection. J. Infect. Dis. 202, 1907–1915 (2010).
doi: 10.1086/657320
Ness, R. B. et al. Bacterial vaginosis and risk of pelvic inflammatory disease. Obstet. Gynecol. 104, 761–769, https://doi.org/10.1097/01.AOG.0000139512.37582.17 (2004).
doi: 10.1097/01.AOG.0000139512.37582.17 pubmed: 15458899
Ness, R. B. et al. A cluster analysis of bacterial vaginosis-associated microflora and pelvic inflammatory disease. Am. J. Epidemiol. 162, 585–590, https://doi.org/10.1093/aje/kwi243 (2005).
doi: 10.1093/aje/kwi243 pubmed: 16093289
Torrone, E., Papp, J. & Weinstock, H. Prevalence of Chlamydia trachomatis Gential Infection Among Persons Aged 14–39 years — United States, 2007–2012. Morbidity and Mortality Weekly Report 2014, 834–838 (2014).
Lis, R., Rowhani-Rahbar, A. & Manhart, L. E. Mycoplasma genitalium infection and female reproductive tract disease: a meta-analysis. Clin. Infect. Dis. 61, 418–426, https://doi.org/10.1093/cid/civ312 (2015).
doi: 10.1093/cid/civ312 pubmed: 25900174
Wiesenfeld, H. C. & Manhart, L. E. Mycoplasma genitalium in Women: Current Knowledge and Research Priorities for This Recently Emerged Pathogen. J. Infect. Dis. 216, S389–S395, https://doi.org/10.1093/infdis/jix198 (2017).
doi: 10.1093/infdis/jix198 pubmed: 28838078 pmcid: 5853983
Taylor, B. D. et al. Risk factors for Mycoplasma genitalium endometritis and incident infection: a secondary data analysis of the T cell Response Against Chlamydia (TRAC) Study. Sex. Transm. Infect. 94, 414–420, https://doi.org/10.1136/sextrans-2017-053376 (2018).
doi: 10.1136/sextrans-2017-053376 pubmed: 29563165 pmcid: 6295147
Workowski, K. A. Centers for Disease Control and Prevention Sexually Transmitted Diseases Treatment Guidelines. Clin. Infect. Dis. 61(Suppl 8), S759–762, https://doi.org/10.1093/cid/civ771 (2015).
doi: 10.1093/cid/civ771 pubmed: 26602614
Gaydos, C., Maldeis, N. E., Hardick, A., Hardick, J. & Quinn, T. C. Mycoplasma genitalium as a contributor to the multiple etiologies of cervicitis in women attending sexually transmitted disease clinics. Sexually transmitted Dis. 36, 598–606, https://doi.org/10.1097/OLQ.0b013e3181b01948 (2009).
doi: 10.1097/OLQ.0b013e3181b01948
Huppert, J. S. et al. Mycoplasma genitalium detected by transcription-mediated amplification is associated with Chlamydia trachomatis in adolescent women. Sexually transmitted Dis. 35, 250–254, https://doi.org/10.1097/OLQ.0b013e31815abac6 (2008).
doi: 10.1097/OLQ.0b013e31815abac6
Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108(Suppl 1), 4680–4687, https://doi.org/10.1073/pnas.1002611107 (2011).
doi: 10.1073/pnas.1002611107 pubmed: 20534435 pmcid: 20534435
Tamarelle, J. et al. The vaginal microbiota and its association with human papillomavirus, Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium infections: a systematic review and meta-analysis. Clin. Microbiol. Infect. 25, 35–47, https://doi.org/10.1016/j.cmi.2018.04.019 (2019).
doi: 10.1016/j.cmi.2018.04.019 pubmed: 29729331
Parolin, C. et al. Insights Into Vaginal Bacterial Communities and Metabolic Profiles of Chlamydia trachomatis Infection: Positioning Between Eubiosis and Dysbiosis. Front. Microbiol. 9, 600, https://doi.org/10.3389/fmicb.2018.00600 (2018).
doi: 10.3389/fmicb.2018.00600 pubmed: 29643849 pmcid: 5883401
Borgogna, J.-L. C. & Yeoman, C. J. In The Human Microbiome Methods in Microbiology 37–91 (2017).
Bautista, C. T. et al. Bacterial vaginosis: a synthesis of the literature on etiology, prevalence, risk factors, and relationship with chlamydia and gonorrhea infections. Mil. Med. Res. 3, 4, https://doi.org/10.1186/s40779-016-0074-5 (2016).
doi: 10.1186/s40779-016-0074-5 pubmed: 4752809 pmcid: 4752809
Kanjee, U. & Houry, W. A. Mechanisms of acid resistance in Escherichia coli. Annu. Rev. Microbiol. 67, 65–81, https://doi.org/10.1146/annurev-micro-092412-155708 (2013).
doi: 10.1146/annurev-micro-092412-155708 pubmed: 23701194
Shah, P. & Swiatlo, E. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 68, 4–16, https://doi.org/10.1111/j.1365-2958.2008.06126.x (2008).
doi: 10.1111/j.1365-2958.2008.06126.x pubmed: 18405343
Gong, Z. et al. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae. PLoS One 11, e0147637, https://doi.org/10.1371/journal.pone.0147637 (2016).
doi: 10.1371/journal.pone.0147637 pubmed: 26808268 pmcid: 4726613
Goytia, M. & Shafer, W. M. Polyamines can increase resistance of Neisseria gonorrhoeae to mediators of the innate human host defense. Infect. Immun. 78, 3187–3195, https://doi.org/10.1128/IAI.01301-09 (2010).
doi: 10.1128/IAI.01301-09 pubmed: 20439477 pmcid: 2897401
Cocchiaro, J. L. & Valdivia, R. H. New insights into Chlamydia intracellular survival mechanisms. Cell Microbiol. 11, 1571–1578, https://doi.org/10.1111/j.1462-5822.2009.01364.x (2009).
doi: 10.1111/j.1462-5822.2009.01364.x pubmed: 19673891 pmcid: 2787098
Cox, R. A. & Garcia-Palmieri, M. R. In Clinical Methods: The History, Physical, and Laboratory Examinations (eds. Walker, H. K., Hall, W. D. & Hurst, J. W.) (1990).
Peters, J. & Byrne, G. I. Chlamydia trachomatis growth depends on eukaryotic cholesterol esterification and is affected by Acyl-CoA:cholesterol acyltransferase inhibition. Pathog. Dis. 73, ftv028, https://doi.org/10.1093/femspd/ftv028 (2015).
doi: 10.1093/femspd/ftv028 pubmed: 25883118 pmcid: 4852217
Hamilton, R. J. R. J. Waxes: chemistry, molecular biology and functions. (Oily Press, 1995).
Huggins, G. R. & Preti, G. Volatile constituents of human vaginal secretions. Am. J. Obstet. Gynecol. 126, 129–136 (1976).
doi: 10.1016/0002-9378(76)90477-4
Mark, K., et al Chlamydia in Adolescent/Adult Reproductive Management Trial Study (CHARM): Clinical Core Protocol. Contemporary Clinical Trials Communications (2019).
Tuddenham, S. et al. Associations between dietary micronutrient intake and molecular-Bacterial Vaginosis. Reprod. Health 16, 151, https://doi.org/10.1186/s12978-019-0814-6 (2019).
doi: 10.1186/s12978-019-0814-6 pubmed: 31640725 pmcid: 6806504
Ravel, J. et al. Daily temporal dynamics of vaginal microbiota before, during and after episodes of bacterial vaginosis. Microbiome 1, 29, https://doi.org/10.1186/2049-2618-1-29 (2013).
doi: 10.1186/2049-2618-1-29 pubmed: 24451163 pmcid: 3968321
Edwards, V. L. et al. The Cervicovaginal Microbiota-Host Interaction Modulates Chlamydia trachomatis Infection. MBio 10, https://doi.org/10.1128/mBio.01548-19 (2019).
Ravel, J. et al. Daily temporal dynamics of vaginal microbiota before, during and after episodes of bacterial vaginosis. Microbiome 1, 29, https://doi.org/10.1186/2049-2618-1-29 (2013).
doi: 10.1186/2049-2618-1-29 pubmed: 24451163 pmcid: 3968321
Holm, J. B. et al. Ultra-high throughput multiplexing and sequencing of >500 bp amplicon regions on the Illumina HiSeq2500 platform (bioRxiv, 2018).
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiology 73, 5261–5267 (2007).
doi: 10.1128/AEM.00062-07
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–596, https://doi.org/10.1093/nar/gks1219 (2013).
doi: 10.1093/nar/gks1219 pubmed: 23193283 pmcid: 23193283
Ravel, J. In Keystone Conference: Role of the Genital Tract Microbiome in Sexual and Reproductive Health.
Tabrizi, S. N. et al. Prospective Evaluation of ResistancePlus MG, a New Multiplex Quantitative PCR Assay for Detection of Mycoplasma genitalium and Macrolide Resistance. J. Clin. Microbiol. 55, 1915–1919, https://doi.org/10.1128/JCM.02312-16 (2017).
doi: 10.1128/JCM.02312-16 pubmed: 28381611 pmcid: 5442548
Tabrizi, S. N. et al. Multiplex Assay for Simultaneous Detection of Mycoplasma genitalium and Macrolide Resistance Using PlexZyme and PlexPrime Technology. PLoS One 11, e0156740, https://doi.org/10.1371/journal.pone.0156740 (2016).
doi: 10.1371/journal.pone.0156740 pubmed: 27271704 pmcid: 4894623
Ding, J. et al. Enhancement of gama-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication. Ultrason. Sonochem. 40, 791–797, https://doi.org/10.1016/j.ultsonch.2017.08.029 (2018).
doi: 10.1016/j.ultsonch.2017.08.029 pubmed: 28946487
Yang, J., Zhao, X., Lu, X., Lin, X. & Xu, G. A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Front. Mol. Biosci. 2, 4, https://doi.org/10.3389/fmolb.2015.00004 (2015).
doi: 10.3389/fmolb.2015.00004 pubmed: 25988172 pmcid: 4428451
Smilde, A. K., van der Werf, M. J., Bijlsma, S., van der Werff-van der Vat, B. J. & Jellema, R. H. Fusion of mass spectrometry-based metabolomics data. Anal. Chem. 77, 6729–6736, https://doi.org/10.1021/ac051080y (2005).
doi: 10.1021/ac051080y pubmed: 16223263
Wei, R. et al. Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data. Sci. Rep. 8, 663, https://doi.org/10.1038/s41598-017-19120-0 (2018).
doi: 10.1038/s41598-017-19120-0 pubmed: 29330539 pmcid: 5766532
Xia, J. & Wishart, D. S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 6, 743–760, https://doi.org/10.1038/nprot.2011.319 (2011).
doi: 10.1038/nprot.2011.319 pubmed: 21637195
Storey, J. D. A Direct Approach to False Discovery Rates. J. R. Stat. Society. Ser. B 64, 479–498 (2002).
doi: 10.1111/1467-9868.00346

Auteurs

Joanna-Lynn C Borgogna (JC)

Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.

Michelle D Shardell (MD)

Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.

Carl J Yeoman (CJ)

Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.
Department of Animal and Range Sciences, Montana State University, Bozeman, MT, USA.

Khalil G Ghanem (KG)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Herlin Kadriu (H)

Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.

Alexander V Ulanov (AV)

Roy J. Carver Biotechnology Center, University of Illinois, Urbana-Champaign, IL, USA.

Charlotte A Gaydos (CA)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Justin Hardick (J)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Courtney K Robinson (CK)

Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.

Patrik M Bavoil (PM)

Department of Microbial Pathogenesis, University of Maryland School of Medicine, Baltimore, MD, USA.

Jacques Ravel (J)

Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.

Rebecca M Brotman (RM)

Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA.
Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.

Susan Tuddenham (S)

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. studden1@jhmi.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH