Observation of 2D Conduction in Ultrathin Germanium Arsenide Field-Effect Transistors.
2D conduction
carrier density
field-effect transistors
germanium arsenide
mobility
temperature-dependent conduction
variable-range hopping
Journal
ACS applied materials & interfaces
ISSN: 1944-8252
Titre abrégé: ACS Appl Mater Interfaces
Pays: United States
ID NLM: 101504991
Informations de publication
Date de publication:
18 Mar 2020
18 Mar 2020
Historique:
pubmed:
27
2
2020
medline:
27
2
2020
entrez:
27
2
2020
Statut:
ppublish
Résumé
We report the fabrication and electrical characterization of germanium arsenide (GeAs) field-effect transistors with ultrathin channels. The electrical transport is investigated in the 20-280 K temperature range, revealing that the p-type electrical conductivity and the field-effect mobility are growing functions of temperature. An unexpected peak is observed in the temperature dependence of the carrier density per area at ∼75 K. Such a feature is explained considering that the increased carrier concentration at higher temperatures and the vertical band bending combined with the gate field lead to the formation of a two-dimensional (2D) conducting channel, limited to few interfacial GeAs layers, which dominates the channel conductance. The conductivity follows the variable-range hopping model at low temperatures and becomes the band-type at higher temperatures when the 2D channel is formed. The formation of the 2D channel is validated through a numerical simulation that shows excellent agreement with the experimental data.
Identifiants
pubmed: 32100522
doi: 10.1021/acsami.0c00348
pmc: PMC7997104
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
12998-13004Références
Nanotechnology. 2015 Nov 27;26(47):475202
pubmed: 26535591
Nanoscale. 2019 Jan 23;11(4):1538-1548
pubmed: 30629066
Adv Mater. 2018 May;30(21):e1705934
pubmed: 29611222
ACS Appl Mater Interfaces. 2019 Jan 30;11(4):4093-4102
pubmed: 30605298
Nanomaterials (Basel). 2020 Jan 04;10(1):
pubmed: 31947985
Nano Lett. 2016 Jul 13;16(7):3969-75
pubmed: 27223230
Nat Nanotechnol. 2014 Oct;9(10):768-79
pubmed: 25286272
ACS Appl Mater Interfaces. 2019 Aug 14;11(32):29022-29028
pubmed: 31313897
Phys Rev Lett. 2018 Aug 3;121(5):056802
pubmed: 30118283
Science. 2004 Oct 22;306(5696):666-9
pubmed: 15499015
ACS Appl Mater Interfaces. 2019 Jun 12;11(23):20949-20955
pubmed: 31117422
ACS Appl Mater Interfaces. 2019 Feb 13;11(6):5675-5681
pubmed: 30693759
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):34424-34429
pubmed: 31448585
Nano Lett. 2017 Sep 13;17(9):5495-5501
pubmed: 28823157
Nanomaterials (Basel). 2018 Nov 03;8(11):
pubmed: 30400280
ACS Appl Mater Interfaces. 2018 Feb 14;10(6):5133-5139
pubmed: 29377662
Nanotechnology. 2017 May 26;28(21):214002
pubmed: 28471746
ACS Nano. 2016 Sep 27;10(9):8964-72
pubmed: 27529802
Small. 2018 Sep;14(36):e1800640
pubmed: 30058290
ACS Nano. 2011 Oct 25;5(10):7707-12
pubmed: 21902203
ACS Appl Mater Interfaces. 2017 Dec 13;9(49):42943-42950
pubmed: 29160684