Hypoxic storage of red blood cells improves metabolism and post-transfusion recovery.
Journal
Transfusion
ISSN: 1537-2995
Titre abrégé: Transfusion
Pays: United States
ID NLM: 0417360
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
17
10
2019
revised:
17
12
2019
accepted:
13
01
2020
pubmed:
28
2
2020
medline:
9
9
2020
entrez:
28
2
2020
Statut:
ppublish
Résumé
Blood transfusion is a lifesaving intervention for millions of recipients worldwide every year. Storing blood makes this possible but also promotes a series of alterations to the metabolism of the stored erythrocyte. It is unclear whether the metabolic storage lesion is correlated with clinically relevant outcomes and whether strategies aimed at improving the metabolic quality of stored units, such as hypoxic storage, ultimately improve performance in the transfused recipient. Twelve healthy donor volunteers were recruited in a two-arm cross-sectional study, in which each subject donated 2 units to be stored under standard (normoxic) or hypoxic conditions (Hemanext technology). End-of-storage measurements of hemolysis and autologous posttransfusion recovery (PTR) were correlated to metabolomics measurements at Days 0, 21, and 42. Hypoxic red blood cells (RBCs) showed superior PTR and comparable hemolysis to donor-paired standard units. Hypoxic storage improved energy and redox metabolism (glycolysis and 2,3-diphosphoglycerate), improved glutathione and methionine homeostasis, decreased purine oxidation and membrane lipid remodeling (free fatty acid levels, unsaturation and hydroxylation, acyl-carnitines). Intra- and extracellular metabolites in these pathways (including some dietary purines) showed significant correlations with PTR and hemolysis, though the degree of correlation was influenced by sulfur dioxide (SO Hypoxic storage improves energy and redox metabolism of stored RBCs, which results in improved posttransfusion recoveries in healthy autologous recipients-a Food and Drug Administration gold standard of stored blood quality. In addition, we identified candidate metabolic predictors of PTR for RBCs stored under standard and hypoxic conditions.
Sections du résumé
BACKGROUND
Blood transfusion is a lifesaving intervention for millions of recipients worldwide every year. Storing blood makes this possible but also promotes a series of alterations to the metabolism of the stored erythrocyte. It is unclear whether the metabolic storage lesion is correlated with clinically relevant outcomes and whether strategies aimed at improving the metabolic quality of stored units, such as hypoxic storage, ultimately improve performance in the transfused recipient.
STUDY DESIGN AND METHODS
Twelve healthy donor volunteers were recruited in a two-arm cross-sectional study, in which each subject donated 2 units to be stored under standard (normoxic) or hypoxic conditions (Hemanext technology). End-of-storage measurements of hemolysis and autologous posttransfusion recovery (PTR) were correlated to metabolomics measurements at Days 0, 21, and 42.
RESULTS
Hypoxic red blood cells (RBCs) showed superior PTR and comparable hemolysis to donor-paired standard units. Hypoxic storage improved energy and redox metabolism (glycolysis and 2,3-diphosphoglycerate), improved glutathione and methionine homeostasis, decreased purine oxidation and membrane lipid remodeling (free fatty acid levels, unsaturation and hydroxylation, acyl-carnitines). Intra- and extracellular metabolites in these pathways (including some dietary purines) showed significant correlations with PTR and hemolysis, though the degree of correlation was influenced by sulfur dioxide (SO
CONCLUSION
Hypoxic storage improves energy and redox metabolism of stored RBCs, which results in improved posttransfusion recoveries in healthy autologous recipients-a Food and Drug Administration gold standard of stored blood quality. In addition, we identified candidate metabolic predictors of PTR for RBCs stored under standard and hypoxic conditions.
Identifiants
pubmed: 32104927
doi: 10.1111/trf.15730
pmc: PMC7899235
mid: NIHMS1648603
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
786-798Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL146442
Pays : United States
Organisme : NIGMS NIH HHS
ID : RM1 GM131968
Pays : United States
Organisme : NHLBI NIH HHS
ID : R21 HL150032
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL149714
Pays : United States
Organisme : NHLBI NIH HHS
ID : R44 HL132172
Pays : United States
Informations de copyright
© 2020 AABB.
Références
J Biol Chem. 2017 Dec 1;292(48):19556-19564
pubmed: 29030425
Mol Biosyst. 2013 Jun;9(6):1196-209
pubmed: 23426130
Proteomics Clin Appl. 2016 Mar;10(3):257-66
pubmed: 26548766
Transfusion. 2017 Jun;57 Suppl 2:1588-1598
pubmed: 28591469
J Proteome Res. 2016 Oct 7;15(10):3883-3895
pubmed: 27646145
Nucleic Acids Res. 2018 Jul 2;46(W1):W486-W494
pubmed: 29762782
Transfusion. 2018 Dec;58(12):2978-2991
pubmed: 30312994
Transfusion. 2019 Jan;59(1):79-88
pubmed: 30408207
Transfusion. 1984 Mar-Apr;24(2):109-14
pubmed: 6710582
Curr Protoc Bioinformatics. 2019 Mar;65(1):e69
pubmed: 30556956
Transfusion. 2019 Jan;59(1):89-100
pubmed: 30353560
Haematologica. 2012 Jan;97(1):107-15
pubmed: 21993682
Blood. 2016 Sep 29;128(13):e43-50
pubmed: 27554084
Blood Adv. 2017 Jun 27;1(15):1132-1141
pubmed: 29034365
Anal Chem. 2010 Dec 1;82(23):9818-26
pubmed: 21049934
Transfusion. 2013 Mar;53(3):606-11
pubmed: 22738400
Front Med (Lausanne). 2018 May 15;5:130
pubmed: 29868587
Transfusion. 2016 Feb;56(2):392-403
pubmed: 26477888
Transfusion. 2015 Nov;55(11):2659-71
pubmed: 26175071
Blood Transfus. 2019 Jan;17(1):27-52
pubmed: 30653459
Bioinformatics. 2012 Feb 1;28(3):373-80
pubmed: 22135418
Transfusion. 2019 Jul;59(7):2264-2275
pubmed: 31002399
Haematologica. 2018 Sep;103(9):1542-1548
pubmed: 29794148
Transfus Med. 2012 Apr;22(2):90-6
pubmed: 22394111
Transfusion. 2015 Jun;55(6):1155-68
pubmed: 25556331
Blood. 2019 Sep 26;134(13):1003-1013
pubmed: 31350268
Transfusion. 2017 Feb;57(2):325-336
pubmed: 27813142
Blood. 2016 Sep 22;128(12):e32-42
pubmed: 27405778
Transfusion. 2016 Apr;56(4):980-93
pubmed: 26662506
Transfusion. 2008 Oct;48(10):2096-105
pubmed: 18631166
Shock. 2020 Mar;53(3):352-362
pubmed: 31478989
J Mol Biol. 2018 Sep 14;430(18 Pt B):3234-3250
pubmed: 29932944
Haematologica. 2016 May;101(5):578-86
pubmed: 26921359
Front Med (Lausanne). 2017 Oct 17;4:175
pubmed: 29090212
Transfusion. 2015 Jun;55(6):1139-42
pubmed: 26074173
Blood Adv. 2019 Mar 26;3(6):884-896
pubmed: 30890545
PLoS One. 2011;6(10):e26032
pubmed: 21998749
Transfusion. 2008 Jul;48(7):1478-85
pubmed: 18482180
Transfusion. 2015 Aug;55(8):1909-18
pubmed: 25720945
Transfusion. 2018 Aug;58(8):1992-2002
pubmed: 29624679
Transfusion. 1997 Feb;37(2):166-74
pubmed: 9051091
Vox Sang. 2007 Jan;92(1):22-31
pubmed: 17181587
Vox Sang. 2017 May;112(4):326-335
pubmed: 28370161
JAMA. 2019 Dec 10;322(22):2179-2190
pubmed: 31821429
Blood Adv. 2019 Aug 13;3(15):2272-2285
pubmed: 31350307
Transfusion. 2018 Dec;58(12):2797-2806
pubmed: 30265764
Transfusion. 2018 Feb;58(2):352-358
pubmed: 29193118
Blood Transfus. 2010 Oct;8(4):220-36
pubmed: 20967163
Transfusion. 2000 Mar;40(3):353-60
pubmed: 10738039
Br J Haematol. 1980 Aug;45(4):659-66
pubmed: 7426443
Blood Transfus. 2017 Mar;15(2):137-144
pubmed: 28263171
Methods Mol Biol. 2019;1978:121-135
pubmed: 31119660
Front Mol Biosci. 2016 Apr 21;3:13
pubmed: 27148539
J Clin Invest. 2017 Jan 3;127(1):375-382
pubmed: 27941245
Transfusion. 2016 Feb;56(2):421-6
pubmed: 26426339
Blood Transfus. 2012 May;10 Suppl 2:s55-62
pubmed: 22890269
Transfusion. 2019 May;59(5):1620-1623
pubmed: 30865302
Transfusion. 2015 Mar;55(3):491-8
pubmed: 25233911
Transfusion. 2008 Jun;48(6):1053-60
pubmed: 18298603
Haematologica. 2018 Feb;103(2):361-372
pubmed: 29079593
Blood Transfus. 2017 Mar;15(2):112-115
pubmed: 28263167