Harnessing Plasticity in an Amine-Borane as a Piezoelectric and Pyroelectric Flexible Film.
energy conversion
flexible films
main group elements
piezoelectricity
pyroelectricity
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
11 May 2020
11 May 2020
Historique:
received:
04
02
2020
pubmed:
28
2
2020
medline:
28
2
2020
entrez:
28
2
2020
Statut:
ppublish
Résumé
We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10 V). A piezoelectric coefficient of d
Identifiants
pubmed: 32104966
doi: 10.1002/anie.202001798
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7808-7812Subventions
Organisme : Engineering and Physical Sciences Research Council
ID : EP/K004956/1
Informations de copyright
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
J. Timmermans, J. Chim. Phys. 1938, 35, 331-344;
J. Harada, Y. Kawamura, Y. Takahashi, Y. Uemura, T. Hasegawa, H. Taniguchi, K. Maruyama, J. Am. Chem. Soc. 2019, 141, 9349-9357;
J. Harada, N. Yoneyama, S. Yokokura, Y. Takahashi, A. Miura, N. Kitamura, T. Inabe, J. Am. Chem. Soc. 2018, 140, 346-354.
T. Vijayakanth, A. K. Srivastava, F. Ram, P. Kulkarni, K. Shanmuganathan, B. Praveenkumar, R. Boomishankar, Angew. Chem. Int. Ed. 2018, 57, 9054-9058;
Angew. Chem. 2018, 130, 9192-9196.
R. Rey, J. Phys. Chem. B 2008, 112, 344-357.
Y.-Y. Tang, P.-F. Li, W.-Q. Liao, P.-P. Shi, Y.-M. You, R.-G. Xiong, J. Am. Chem. Soc. 2018, 140, 8051-8059.
A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, Chem. Rev. 2010, 110, 4023-4078;
During the review process for this article, the following work on the solid state properties of TMAB was published: C. M. Reddy, A. Mondal, B. Bhattacharya, S. Das, S. Bhunia, R. Chowdhury, S. Dey, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202001060;
Angew. Chem. 2020, https://doi.org/10.1002/ange.202001060.
P. Cassoux, R. L. Kuczkowski, P. S. Bryan, R. C. Taylor, Inorg. Chem. 1975, 14, 126-129.
C. T. Yim, D. F. R. Gilson, Can. J. Chem. 1970, 48, 515-521;
L. Latanowicz, E. C. Reynhardt, J. Magn. Reson. Ser. A 1996, 121, 23-32;
G. H. Penner, B. Zhao, K. R. Jeffrey, Z. Naturforsch. A 1995, 50, 81-89.
S. Aldridge, A. J. Downs, C. Y. Tang, S. Parsons, M. C. Clarke, R. D. L. Johnstone, H. E. Robertson, D. W. H. Rankin, D. A. Wann, J. Am. Chem. Soc. 2009, 131, 2231-2243.
A. K. Jonscher, Nature 1977, 267, 673-679;
D. P. Almond, C. R. Bowen, Phys. Rev. Lett. 2004, 92, 157601.
Y. Liu, Y. Zhang, M.-J. Chow, Q. N. Chen, J. Li, Phys. Rev. Lett. 2012, 108, 078103.
H. Khanbareh, J. B. J. Schelen, S. van der Zwaag, W. A. Groen, Rev. Sci. Instrum. 2015, 86, 105111.
Y. Rakita, E. Meirzadeh, T. Bendikov, V. Kalchenko, I. Lubomirsky, G. Hodes, D. Ehre, D. Cahen, APL Mater. 2016, 4, 051101.
C. R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, V. Topolov, Mater. Lett. 2015, 138, 243-246.
C. R. Bowen, H. A. Kim, P. M. Weaver, S. Dunn, Energy Environ. Sci. 2014, 7, 25-44;
P. Martins, J. S. Nunes, G. Hungerford, D. Miranda, A. Ferreira, V. Sencadas, S. Lanceros-Méndez, Phys. Lett. A 2009, 373, 177-180.
Y. Zhang, Y. Bao, D. Zhang, C. R. Bowen, J. Am. Ceram. Soc. 2015, 98, 2980-2983.
I. Hatta, A. Ikushima, J. Phys. Soc. Jpn. 1976, 41, 558-564.
J. I. Roscow, Y. Zhang, M. J. Kraśny, R. W. C. Lewis, J. Taylor, C. R. Bowen, J. Phys. D 2018, 51, 225301.