Modulation of Fatty Acid-Related Genes in the Response of H9c2 Cardiac Cells to Palmitate and n-3 Polyunsaturated Fatty Acids.
Animals
Apoptosis
/ drug effects
Cell Line
Cell Size
/ drug effects
Cell Survival
/ drug effects
Docosahexaenoic Acids
/ pharmacology
Eicosapentaenoic Acid
/ pharmacology
Fatty Acids
/ metabolism
Fatty Acids, Omega-3
/ pharmacology
Gene Expression Regulation
/ drug effects
Gene Silencing
/ drug effects
Hypertrophy
Membrane Potential, Mitochondrial
/ drug effects
MicroRNAs
/ genetics
Myocytes, Cardiac
/ drug effects
Palmitates
/ pharmacology
RNA, Messenger
/ genetics
Rats
Sterol Regulatory Element Binding Proteins
/ genetics
H9c2 cardiomyoblasts
apoptosis
docosahexaenoic acid
eicosapentaenoic acid
hypertrophy
miR-33
nutraceuticals
palmitic acid
Journal
Cells
ISSN: 2073-4409
Titre abrégé: Cells
Pays: Switzerland
ID NLM: 101600052
Informations de publication
Date de publication:
26 02 2020
26 02 2020
Historique:
received:
21
01
2020
revised:
19
02
2020
accepted:
24
02
2020
entrez:
1
3
2020
pubmed:
1
3
2020
medline:
20
2
2021
Statut:
epublish
Résumé
While high levels of saturated fatty acids are associated with impairment of cardiovascular functions, n-3 polyunsaturated fatty acids (PUFAs) have been shown to exert protective effects. However the molecular mechanisms underlying this evidence are not completely understood. In the present study we have used rat H9c2 ventricular cardiomyoblasts as a cellular model of lipotoxicity to highlight the effects of palmitate, a saturated fatty acid, on genetic and epigenetic modulation of fatty acid metabolism and fate, and the ability of PUFAs, eicosapentaenoic acid, and docosahexaenoic acid, to contrast the actions that may contribute to cardiac dysfunction and remodeling. Treatment with a high dose of palmitate provoked mitochondrial depolarization, apoptosis, and hypertrophy of cardiomyoblasts. Palmitate also enhanced the mRNA levels of sterol regulatory element-binding proteins (SREBPs), a family of master transcription factors for lipogenesis, and it favored the expression of genes encoding key enzymes that metabolically activate palmitate and commit it to biosynthetic pathways. Moreover, miR-33a, a highly conserved microRNA embedded in an intronic sequence of the SREBP2 gene, was co-expressed with the SREBP2 messenger, while its target carnitine palmitoyltransferase-1b was down-regulated. Manipulation of the levels of miR-33a and SREBPs allowed us to understand their involvement in cell death and hypertrophy. The simultaneous addition of PUFAs prevented the effects of palmitate and protected H9c2 cells. These results may have implications for the control of cardiac metabolism and dysfunction, particularly in relation to dietary habits and the quality of fatty acid intake.
Identifiants
pubmed: 32110930
pii: cells9030537
doi: 10.3390/cells9030537
pmc: PMC7140414
pii:
doi:
Substances chimiques
Fatty Acids
0
Fatty Acids, Omega-3
0
MIRN33 microRNA, rat
0
MicroRNAs
0
Palmitates
0
RNA, Messenger
0
Sterol Regulatory Element Binding Proteins
0
Docosahexaenoic Acids
25167-62-8
Eicosapentaenoic Acid
AAN7QOV9EA
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Curr Opin Lipidol. 2013 Dec;24(6):467-74
pubmed: 24184945
Endocrinology. 2016 Jun;157(6):2243-58
pubmed: 27035653
J Biol Chem. 2004 Mar 19;279(12):11767-76
pubmed: 14668353
Clin Lab. 2018 Oct 1;64(10):1755-1760
pubmed: 30336533
Circ Res. 2017 Mar 3;120(5):835-847
pubmed: 27920122
Acta Diabetol. 2017 Jul;54(7):635-644
pubmed: 28265821
Biochem Biophys Res Commun. 2015 Dec 4-11;468(1-2):73-8
pubmed: 26546819
J Mol Cell Cardiol. 2016 May;94:1-9
pubmed: 26995156
Science. 2010 Jun 18;328(5985):1566-9
pubmed: 20466882
Lipids. 2011 Jul;46(7):627-36
pubmed: 21544603
Am J Physiol Heart Circ Physiol. 2016 Jul 1;311(1):H64-75
pubmed: 27199118
J Lipid Res. 2012 Aug;53(8):1459-71
pubmed: 22628619
J Lipid Res. 2008 Oct;49(10):2101-12
pubmed: 18515784
Atherosclerosis. 2013 Apr;227(2):289-96
pubmed: 23433401
J Lipid Res. 2009 Nov;50(11):2314-23
pubmed: 19470430
Biochimie. 2004 Nov;86(11):839-48
pubmed: 15589694
FEBS J. 2009 Feb;276(3):616-21
pubmed: 19143830
Cardiovasc Res. 2011 Oct 1;92(1):10-8
pubmed: 21803867
Adv Nutr. 2011 Jul;2(4):304-16
pubmed: 22332072
J Biol Chem. 2015 Dec 25;290(52):30947-61
pubmed: 26555260
Proc Natl Acad Sci U S A. 2011 May 31;108(22):9232-7
pubmed: 21576456
Biochim Biophys Acta. 2016 Jun;1860(6):1181-91
pubmed: 26947008
J Lipid Res. 2005 Jul;46(7):1502-11
pubmed: 15834126
Mol Cell Endocrinol. 2012 Oct 15;362(1-2):242-52
pubmed: 22820130
Can J Physiol Pharmacol. 2019 Apr;97(4):320-327
pubmed: 30388381
Food Funct. 2015 Jul;6(7):2231-9
pubmed: 26068025
Circulation. 2012 Oct 2;126(14):1705-16
pubmed: 22932257
J Cell Biochem. 2010 Oct 15;111(3):634-42
pubmed: 20589757
J Am Coll Cardiol. 2011 Nov 8;58(20):2047-67
pubmed: 22051327
J Cell Biol. 1985 Mar;100(3):965-73
pubmed: 3972906
Exp Cell Res. 2017 Feb 1;351(1):109-120
pubmed: 28088331
J Biol Chem. 2010 Nov 19;285(47):36818-27
pubmed: 20837491
J Biol Chem. 2009 Dec 25;284(52):36312-23
pubmed: 19778901
Cell Physiol Biochem. 2016;40(5):969-981
pubmed: 27941349
Life Sci. 2014 Nov 24;118(2):173-8
pubmed: 24792520
Biochim Biophys Acta. 2014 Dec;1841(12):1648-55
pubmed: 25251292
J Clin Invest. 2002 May;109(9):1125-31
pubmed: 11994399
J Clin Invest. 2001 Apr;107(7):813-22
pubmed: 11285300
Circ Res. 2015 Jan 16;116(2):279-88
pubmed: 25362209
Osteoarthritis Cartilage. 2017 Apr;25(4):600-610
pubmed: 27914878
Exp Cell Res. 2013 Apr 15;319(7):955-66
pubmed: 23416068
Physiol Genomics. 2004 Aug 11;18(3):273-83
pubmed: 15306692
Electrophoresis. 2016 Jul;37(13):1805-13
pubmed: 27028988
Nutrients. 2012 Feb;4(2):78-90
pubmed: 22413063
Biochem J. 2001 Apr 1;355(Pt 1):199-206
pubmed: 11256964
Cell Physiol Biochem. 2018;48(5):1995-2010
pubmed: 30092598
Atherosclerosis. 2016 Mar;246:352-60
pubmed: 26828754
Exp Cell Res. 2017 May 15;354(2):85-94
pubmed: 28336294
Biochimie. 2019 Apr;159:36-48
pubmed: 30716358
Cochrane Database Syst Rev. 2011 Jul 06;(7):CD002137
pubmed: 21735388
Int J Med Sci. 2017 Feb 23;14(3):268-274
pubmed: 28367087
Eur J Pharmacol. 2015 Dec 15;769:55-63
pubmed: 26522928